rindcalc is a python package created to calculate Landsat-8 indices.
Project description
rindcalc
Raster Index Calculator
rind calc is a python package created to allow raster index calculation using Landsat-8 using gdal and numpy. Landsat bands are pulled directly from file downloaded from USGS containing all bands in landsat scene. Since rindcalc only requires the file in which Landsat-8 bands are contained instead of each individual band to be specified, it allows for easy, quick, and seamless index calculations from Landsat-8 imagery.
Indices: AWEIsh, AWEInsh, NDMI, MNDWI, NDVI, GNDVI, SAVI, NDBI, NDBaI, NBLI, EBBI, UI, NBRI
K means unsupervised classification module utilizes sci-kit learn's MiniBatchKMeans which provides significantly faster computation times than the standard K-means algorithm, but with slightly worse result [1]. 'No Data' values are populated with the median value of the array as the classification algorithm does not work with numpy arrays that contain 'nan' values.
Dependencies
- GDAL (v 3.0.0 or greater)
- numpy (v 1.0.0 or greater)
- sci-kit learn ( v (0.22.1 or greater))
Installation
Windows
pip install rindcalc
For Windows installation gdal wheels must be installed first.
Modules
Index Modules
- AWEIsh(landsat_dir, aweish_out)
- AWEInsh(landsat_dir, aweinsh_out)
- NDMI(landsat_dir, ndmi_out)
- MNDWI(landsat_dir, mndwi_out)
- NDVI(landsat_dir, ndvi_out)
- GNDVI(landsat_dir)
- SAVI(landsat_dir, soil_brightness, savi_out)
- NDBI(landsat_dir, ndbi_out)
- NDBaI(landsat_dir, ndbai_out)
- NBLI(landsat_dir, nbli_out)
- EBBI(landsat_dir, ebbi_out)
- UI(landsat_dir, ui_out )
- NBRI(landsat_dir, nbri_out)
landsat_dir = Landsat-8 folder that contains all bands
*_out = out file raster will be saved as
i.e. Landsat-8 folder structure:
.
|--LC08_L1TP_091086_20191222_20191223_01_RT Landsat Folder ex. #1
| |-- LC08_L1TP_091086_20191222_20191223_01_RT_B1.TIF
| |-- LC08_L1TP_091086_20191222_20191223_01_RT_B2.TIF
| |-- LC08_L1TP_091086_20191222_20191223_01_RT_B3.TIF
| |-- ...
|-- 2019_12_22 Landsat Folder ex. #2
| |-- LC08_L1TP_091086_20191222_20191223_01_RT_B1.TIF
| |-- LC08_L1TP_091086_20191222_20191223_01_RT_B2.TIF
| |-- LC08_L1TP_091086_20191222_20191223_01_RT_B3.TIF
| |-- ...
K Means Classification Module
- k_means(input_raster, out_raster, clusters, itr, batch_size)
clusters = Number of classes wanted
itr = Number of iterations to perform
batch_size = Size of mini batches
EX:
import rindcalc as rc
landsat_dir = 'C:/.../.../LC08_L1TP_091086_20191222_20191223_01_RT'
ndvi_out = 'C:/.../.../NDVI_1.tif'
rc.NDVI(landsat_dir, ndvi_out)
OR:
import rindcalc as rc
rc.NDVI(landsat_dir = 'C:/.../.../2019_12_22', ndvi_out = 'C:/.../.../NDVI_2.tif')
KMEANS EX:
import rindcalc as rc
input_raster = 'C:/.../.../NDVI.tif'
out_raster = 'C:/.../.../NDVI_K.TIF'
clusters = 2
itr = 10
batch_size = 50
rc.k_means(input_raster, out_raster, clusters, itr, batch_size)
Landsat-8 Bands
Band Number | Name | µm | Resolution |
---|---|---|---|
1 | Coastal/Aerosal | 0.433–0.453 | 30 m |
2 | Blue | 0.450–0.515 | 30 m |
3 | Green | 0.525–0.600 | 30 m |
4 | Red | 0.630–0.680 | 30 m |
5 | NIR | 0.845–0.885 | 30 m |
6 | SWIR 1 | 1.560–1.660 | 30 m |
7 | SWIR 2 | 2.100–2.300 | 30 m |
8 | Panchromatic | 0.500–0.680 | 15 m |
9 | Cirrus | 1.360–1.390 | 30 m |
10 | TIR 1 | 10.6-11.2 | 100 m |
11 | TIR 2 | 11.5-12.5 | 100 m |
Indices
Water
-
AWEIsh = ((Blue + 2.5 * Green - 1.5 * (NIR + SWIR1) - 0.25 * SWIR2)) / (Blue + Green + NIR + SWIR1 + SWIR2)
-
AWEInsh = ((4 * (green_band - swir1_band) - (0.25 * nir_band + 2.75 * swir1_band)) / (green_band + swir1_band + nir_band))
-
NDWI = ((nir_band - swir1_band) / (nir_band + swir1_band))
-
MNDWI = ((Green - SWIR1) / (Green + SWIR1))
Moisture
- NDMI = ((NIR - SWIR1) / (NIR + SWIR1))
Vegetation
-
NDVI = ((NIR - Red) / (NIR + Red))
-
Green NDVI (GNDVI) = ((nir_band - green_band) / (nir_band + green_band))
-
SAVI = ((NIR - Red) / (NIR + Red + L)) x (1 + L)
- L = Soil Brightness Factor
-
MSAVI2 = (((2 * nir_band + 1) - (np.sqrt(((2 * nir_band + 1)**2) - 8 * (nir_band - red_band)))) / 2)
Urban/Landscape
-
NDBI = (SWIR1 - NIR) / (SWIR1 + NIR)
-
NDBaI = ((SWIR1 - TIR) / (SWIR1 + TIR))
-
NBLI = ((Red - TIR) / (Red + TIR))
-
EBBI = ((swir1_band - nir_band) / (10 * (np.sqrt(swir1_band + tir_band))))
-
UI = ((swir2_band - nir_band) / (swir2_band + nir_band))
Fire
- NBRI = ((nir_band - swir2_band) / (nir_band + swir2_band))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file rindcalc-1.1.1.tar.gz
.
File metadata
- Download URL: rindcalc-1.1.1.tar.gz
- Upload date:
- Size: 8.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
8e8faf35fbc4367b81cd03f255dfd2d108a7b0efeb615d3437df29f2dc4c0404
|
|
MD5 |
a40ff4e9bb6fb66d7503e1a6d3b75ae5
|
|
BLAKE2b-256 |
debd58e2aaa66b63662c8f75da9d2f9982c0234d8ebc4ffae42005fd4e2ac037
|
File details
Details for the file rindcalc-1.1.1-py3-none-any.whl
.
File metadata
- Download URL: rindcalc-1.1.1-py3-none-any.whl
- Upload date:
- Size: 27.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ac5f0482851cd174c7b7ef63ab2459d35f43e33ea0158fd89850ace94962c06e
|
|
MD5 |
b46bddb6c479acffb6cb910054097087
|
|
BLAKE2b-256 |
e9b08cc06b500168f0c958e8aa0a741567911557fea7f689bf930a23864d775a
|