Skip to main content

rindcalc is a python package created to calculate Landsat-8 indices.

Project description

rindcalc

Raster Index Calculator

rind calc is a python package created to allow raster index calculation using Landsat-8 using gdal and numpy. Landsat bands are pulled directly from file downloaded from USGS containing all bands in landsat scene. Since rindcalc only requires the file in which Landsat-8 bands are contained instead of each individual band to be specified, it allows for easy, quick, and seamless index calculations from Landsat-8 imagery.

Indices: AWEIsh, AWEInsh, NDMI, MNDWI, NDVI, GNDVI, SAVI, NDBI, NDBaI, NBLI, EBBI, UI, NBRI

K means unsupervised classification module utilizes sci-kit learn's MiniBatchKMeans which provides significantly faster computation times than the standard K-means algorithm, but with slightly worse result [1]. 'No Data' values are populated with the median value of the array as the classification algorithm does not work with numpy arrays that contain 'nan' values.

Dependencies

  • GDAL (v 3.0.0 or greater)
  • numpy (v 1.0.0 or greater)
  • sci-kit learn ( v (0.22.1 or greater))

Installation

Windows

pip install rindcalc

For Windows installation gdal wheels must be installed first.

Modules

Index Modules

  • AWEIsh(landsat_dir, aweish_out)
  • AWEInsh(landsat_dir, aweinsh_out)
  • NDMI(landsat_dir, ndmi_out)
  • MNDWI(landsat_dir, mndwi_out)
  • NDVI(landsat_dir, ndvi_out)
  • GNDVI(landsat_dir)
  • SAVI(landsat_dir, soil_brightness, savi_out)
  • NDBI(landsat_dir, ndbi_out)
  • NDBaI(landsat_dir, ndbai_out)
  • NBLI(landsat_dir, nbli_out)
  • EBBI(landsat_dir, ebbi_out)
  • UI(landsat_dir, ui_out )
  • NBRI(landsat_dir, nbri_out)

landsat_dir = Landsat-8 folder that contains all bands

*_out = out file raster will be saved as

i.e. Landsat-8 folder structure:

.
|--LC08_L1TP_091086_20191222_20191223_01_RT                     Landsat Folder ex. #1
|   |-- LC08_L1TP_091086_20191222_20191223_01_RT_B1.TIF
|   |-- LC08_L1TP_091086_20191222_20191223_01_RT_B2.TIF
|   |-- LC08_L1TP_091086_20191222_20191223_01_RT_B3.TIF
|   |-- ...
|-- 2019_12_22                                                  Landsat Folder ex. #2
|   |-- LC08_L1TP_091086_20191222_20191223_01_RT_B1.TIF
|   |-- LC08_L1TP_091086_20191222_20191223_01_RT_B2.TIF
|   |-- LC08_L1TP_091086_20191222_20191223_01_RT_B3.TIF
|   |-- ...

K Means Classification Module

  • k_means(input_raster, out_raster, clusters, itr, batch_size)

clusters = Number of classes wanted

itr = Number of iterations to perform

batch_size = Size of mini batches

EX:

import rindcalc as rc
landsat_dir = 'C:/.../.../LC08_L1TP_091086_20191222_20191223_01_RT'
ndvi_out = 'C:/.../.../NDVI_1.tif'
rc.NDVI(landsat_dir, ndvi_out)

OR:

import rindcalc as rc
rc.NDVI(landsat_dir = 'C:/.../.../2019_12_22', ndvi_out = 'C:/.../.../NDVI_2.tif')

KMEANS EX:

import rindcalc as rc
input_raster = 'C:/.../.../NDVI.tif'
out_raster = 'C:/.../.../NDVI_K.TIF'
clusters = 2
itr = 10
batch_size = 50
rc.k_means(input_raster, out_raster, clusters, itr, batch_size)

Landsat-8 Bands

Band Number Name µm Resolution
1 Coastal/Aerosal 0.433–0.453 30 m
2 Blue 0.450–0.515 30 m
3 Green 0.525–0.600 30 m
4 Red 0.630–0.680 30 m
5 NIR 0.845–0.885 30 m
6 SWIR 1 1.560–1.660 30 m
7 SWIR 2 2.100–2.300 30 m
8 Panchromatic 0.500–0.680 15 m
9 Cirrus 1.360–1.390 30 m
10 TIR 1 10.6-11.2 100 m
11 TIR 2 11.5-12.5 100 m

Indices

Water

  • AWEIsh = ((Blue + 2.5 * Green - 1.5 * (NIR + SWIR1) - 0.25 * SWIR2)) / (Blue + Green + NIR + SWIR1 + SWIR2)

  • AWEInsh = ((4 * (green_band - swir1_band) - (0.25 * nir_band + 2.75 * swir1_band)) / (green_band + swir1_band + nir_band))

  • NDWI = ((nir_band - swir1_band) / (nir_band + swir1_band))

  • MNDWI = ((Green - SWIR1) / (Green + SWIR1))

Moisture

  • NDMI = ((NIR - SWIR1) / (NIR + SWIR1))

Vegetation

  • NDVI = ((NIR - Red) / (NIR + Red))

  • Green NDVI (GNDVI) = ((nir_band - green_band) / (nir_band + green_band))

  • SAVI = ((NIR - Red) / (NIR + Red + L)) x (1 + L)

    • L = Soil Brightness Factor
  • MSAVI2 = (((2 * nir_band + 1) - (np.sqrt(((2 * nir_band + 1)**2) - 8 * (nir_band - red_band)))) / 2)

Urban/Landscape

  • NDBI = (SWIR1 - NIR) / (SWIR1 + NIR)

  • NDBaI = ((SWIR1 - TIR) / (SWIR1 + TIR))

  • NBLI = ((Red - TIR) / (Red + TIR))

  • EBBI = ((swir1_band - nir_band) / (10 * (np.sqrt(swir1_band + tir_band))))

  • UI = ((swir2_band - nir_band) / (swir2_band + nir_band))

Fire

  • NBRI = ((nir_band - swir2_band) / (nir_band + swir2_band))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rindcalc-1.1.1.tar.gz (8.7 kB view details)

Uploaded Source

Built Distribution

rindcalc-1.1.1-py3-none-any.whl (27.2 kB view details)

Uploaded Python 3

File details

Details for the file rindcalc-1.1.1.tar.gz.

File metadata

  • Download URL: rindcalc-1.1.1.tar.gz
  • Upload date:
  • Size: 8.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for rindcalc-1.1.1.tar.gz
Algorithm Hash digest
SHA256 8e8faf35fbc4367b81cd03f255dfd2d108a7b0efeb615d3437df29f2dc4c0404
MD5 a40ff4e9bb6fb66d7503e1a6d3b75ae5
BLAKE2b-256 debd58e2aaa66b63662c8f75da9d2f9982c0234d8ebc4ffae42005fd4e2ac037

See more details on using hashes here.

File details

Details for the file rindcalc-1.1.1-py3-none-any.whl.

File metadata

  • Download URL: rindcalc-1.1.1-py3-none-any.whl
  • Upload date:
  • Size: 27.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.4.0 requests-toolbelt/0.9.1 tqdm/4.36.1 CPython/3.7.4

File hashes

Hashes for rindcalc-1.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ac5f0482851cd174c7b7ef63ab2459d35f43e33ea0158fd89850ace94962c06e
MD5 b46bddb6c479acffb6cb910054097087
BLAKE2b-256 e9b08cc06b500168f0c958e8aa0a741567911557fea7f689bf930a23864d775a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page