Skip to main content

A Python library for robotic education and research

Project description

Robotics Toolbox for Python

PyPI version Anaconda version PyPI - Python Version License: MIT Binder QUT Centre for Robotics Open Source

Build Status Coverage Language grade: Python PyPI - Downloads

A Python implementation of the Robotics Toolbox for MATLAB®

Synopsis

This toolbox brings robotics-specific functionality to Python, and leverages Python's advantages of portability, ubiquity and support, and the capability of the open-source ecosystem for linear algebra (numpy, scipy), graphics (matplotlib, three.js, WebGL), interactive development (jupyter, jupyterlab, mybinder.org), and documentation (sphinx).

The Toolbox provides tools for representing the kinematics and dynamics of serial-link manipulators - you can easily create your own in Denavit-Hartenberg form, import a URDF file, or use over 30 supplied models for well-known contemporary robots from Franka-Emika, Kinova, Universal Robotics, Rethink as well as classical robots such as the Puma 560 and the Stanford arm.

The toolbox will also support mobile robots with functions for robot motion models (unicycle, bicycle), path planning algorithms (bug, distance transform, D*, PRM), kinodynamic planning (lattice, RRT), localization (EKF, particle filter), map building (EKF) and simultaneous localization and mapping (EKF).

The Toolbox provides:

  • code that is mature and provides a point of comparison for other implementations of the same algorithms;
  • routines which are generally written in a straightforward manner which allows for easy understanding, perhaps at the expense of computational efficiency;
  • source code which can be read for learning and teaching;
  • backward compatability with the Robotics Toolbox for MATLAB

The Toolbox leverages the Spatial Maths Toolbox for Python to provide support for data types such as SO(n) and SE(n) matrices, quaternions, twists and spatial vectors.

Code Example

We will load a model of the Franka-Emika Panda robot defined classically using modified (Craig's convention) Denavit-Hartenberg notation

import roboticstoolbox as rtb
robot = rtb.models.DH.Panda()
print(robot)

	Panda (by Franka Emika): 7 axes (RRRRRRR), modified DH parameters
	┏━━━━━━━━┳━━━━━━━━┳━━━━━┳━━━━━━━┳━━━━━━━━━┳━━━━━━━━┓
	 aⱼ₋₁     ₋₁   θⱼ    dⱼ      q       q   
	┣━━━━━━━━╋━━━━━━━━╋━━━━━╋━━━━━━━╋━━━━━━━━━╋━━━━━━━━┫
	    0.0    0.0°   q1  0.333  -166.0°  166.0° 
	    0.0  -90.0°   q2    0.0  -101.0°  101.0° 
	    0.0   90.0°   q3  0.316  -166.0°  166.0° 
	 0.0825   90.0°   q4    0.0  -176.0°   -4.0° 
	-0.0825  -90.0°   q5  0.384  -166.0°  166.0° 
	    0.0   90.0°   q6    0.0    -1.0°  215.0° 
	  0.088   90.0°   q7  0.107  -166.0°  166.0° 
	┗━━━━━━━━┻━━━━━━━━┻━━━━━┻━━━━━━━┻━━━━━━━━━┻━━━━━━━━┛

	┌─────┬───────────────────────────────────────┐
	tool  t = 0, 0, 0.1; rpy/xyz = -45°, 0°, 0° 
	└─────┴───────────────────────────────────────┘

	┌─────┬─────┬────────┬─────┬───────┬─────┬───────┬──────┐
	name  q0   q1      q2   q3     q4   q5     q6   
	├─────┼─────┼────────┼─────┼───────┼─────┼───────┼──────┤
	  qz   0°   0°      0°   0°     0°   0°     0°  
	  qr   0°  -17.2°   0°  -126°   0°   115°   45° 
	└─────┴─────┴────────┴─────┴───────┴─────┴───────┴──────┘

T = robot.fkine(robot.qz)  # forward kinematics
print(T)

	   0.707107    0.707107    0           0.088        
	   0.707107   -0.707107    0           0            
	   0           0          -1           0.823        
	   0           0           0           1          

(Python prompts are not shown to make it easy to copy+paste the code, console output is indented)

We can solve inverse kinematics very easily. We first choose an SE(3) pose defined in terms of position and orientation (end-effector z-axis down (A=-Z) and finger orientation parallel to y-axis (O=+Y)).

from spatialmath import SE3

T = SE3(0.7, 0.2, 0.1) * SE3.OA([0, 1, 0], [0, 0, -1])
sol = robot.ikine_LM(T)         # solve IK
print(sol)
	IKsolution(q=array([  0.2134,    1.867,  -0.2264,   0.4825,   0.2198,    1.396,   -2.037]), success=True, reason=None, iterations=12, residual=1.4517646473808178e-11)

q_pickup = sol.q
print(robot.fkine(q_pickup))    # FK shows that desired end-effector pose was achieved

	Out[35]: 
		-1            9.43001e-14  2.43909e-12  0.7          
		 9.43759e-14  1            7.2574e-13   0.2          
		-2.43913e-12  7.2575e-13  -1            0.1          
		 0            0            0            1 

Note that because this robot is redundant we don't have any control over the arm configuration apart from end-effector pose, ie. we can't control the elbow height.

We can animate a path from the upright qz configuration to this pickup configuration

qt = rtb.jtraj(robot.qz, q_pickup, 50)
robot.plot(qt.q, movie='panda1.gif')

Panda trajectory animation

which uses the default matplotlib backend. Grey arrows show the joint axes and the colored frame shows the end-effector pose.

Let's now load a URDF model of the same robot. The kinematic representation is no longer based on Denavit-Hartenberg parameters, it is now a rigid-body tree.

robot = rtb.models.URDF.Panda()  # load URDF version of the Panda
print(robot)    # display the model

	panda (by Franka Emika): 7 axes (RRRRRRR), ETS model
	┌───┬──────────────┬─────────────┬──────────────┬──────────────────────────────────────────────────────────────────────────────┐
	id      link        parent        joint                                          ETS                                      
	├───┼──────────────┼─────────────┼──────────────┼──────────────────────────────────────────────────────────────────────────────┤
	 0   panda_link0          _O_                {panda_link0} = {_O_}                                                        
	 1   panda_link1  panda_link0  panda_joint1  {panda_link1} = {panda_link0}  * tz(0.333) * Rz(q0)                          
	 2   panda_link2  panda_link1  panda_joint2  {panda_link2} = {panda_link1}  * Rx(-90°) * Rz(q1)                           
	 3   panda_link3  panda_link2  panda_joint3  {panda_link3} = {panda_link2}  * ty(-0.316) * Rx(90°) * Rz(q2)               
	 4   panda_link4  panda_link3  panda_joint4  {panda_link4} = {panda_link3}  * tx(0.0825) * Rx(90°) * Rz(q3)               
	 5   panda_link5  panda_link4  panda_joint5  {panda_link5} = {panda_link4}  * tx(-0.0825) * ty(0.384) * Rx(-90°) * Rz(q4) 
	 6   panda_link6  panda_link5  panda_joint6  {panda_link6} = {panda_link5}  * Rx(90°) * Rz(q5)                            
	 7   panda_link7  panda_link6  panda_joint7  {panda_link7} = {panda_link6}  * tx(0.088) * Rx(90°) * Rz(q6)                
	 8  @panda_link8  panda_link7  panda_joint8  {panda_link8} = {panda_link7}  * tz(0.107)                                   
	└───┴──────────────┴─────────────┴──────────────┴──────────────────────────────────────────────────────────────────────────────┘

	┌─────┬─────┬────────┬─────┬───────┬─────┬───────┬──────┐
	name  q0   q1      q2   q3     q4   q5     q6   
	├─────┼─────┼────────┼─────┼───────┼─────┼───────┼──────┤
	  qz   0°   0°      0°   0°     0°   0°     0°  
	  qr   0°  -17.2°   0°  -126°   0°   115°   45° 
	└─────┴─────┴────────┴─────┴───────┴─────┴───────┴──────┘

The symbol @ indicates the link as an end-effector, a leaf node in the rigid-body tree.

We can instantiate our robot inside a browser-based 3d-simulation environment.

from roboticstoolbox.backends.Swift import Swift  # instantiate 3D browser-based visualizer
backend = Swift()
backend.launch()            # activate it
backend.add(robot)          # add robot to the 3D scene
for qk in qt.q:             # for each joint configuration on trajectory
      robot.q = qk          # update the robot state
      backend.step()        # update visualization

Getting going

Installing

You will need Python >= 3.6

Using pip

Install a snapshot from PyPI

pip3 install roboticstoolbox-python

Available options are:

  • vpython install VPython backend
  • collision install collision checking with pybullet

Put the options in a comma separated list like

pip3 install roboticstoolbox-python[optionlist]

Swift, a web-based visualizer, is installed as part of Robotics Toolbox.

From GitHub

To install the bleeding-edge version from GitHub

git clone https://github.com/petercorke/robotics-toolbox-python.git
cd robotics-toolbox-python
pip3 install -e .

Run some examples

The notebooks folder contains some tutorial Jupyter notebooks which you can browse on GitHub.

Or you can run them, and experiment with them, at mybinder.org.

Toolbox Research Applications

The toolbox is incredibly useful for developing and prototyping algorithms for research, thanks to the exhaustive set of well documented and mature robotic functions exposed through clean and painless APIs. Additionally, the ease at which a user can visualize their algorithm supports a rapid prototyping paradigm.

Publication List

J. Haviland and P. Corke, "NEO: A Novel Expeditious Optimisation Algorithm for Reactive Motion Control of Manipulators," in IEEE Robotics and Automation Letters, doi: 10.1109/LRA.2021.3056060. In the video, the robot is controlled using the Robotics toolbox for Python and features a recording from the Swift Simulator.

[Arxiv Paper] [IEEE Xplore] [Project Website] [Video] [Code Example]

A Purely-Reactive Manipulability-Maximising Motion Controller, J. Haviland and P. Corke. In the video, the robot is controlled using the Robotics toolbox for Python.

[Paper] [Project Website] [Video] [Code Example]


Common Issues

See the common issues with fixes here.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

roboticstoolbox-python-0.10.0.tar.gz (283.6 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

roboticstoolbox_python-0.10.0-cp39-cp39-win_amd64.whl (395.9 kB view details)

Uploaded CPython 3.9Windows x86-64

roboticstoolbox_python-0.10.0-cp39-cp39-macosx_10_14_x86_64.whl (383.9 kB view details)

Uploaded CPython 3.9macOS 10.14+ x86-64

roboticstoolbox_python-0.10.0-cp38-cp38-win_amd64.whl (395.9 kB view details)

Uploaded CPython 3.8Windows x86-64

roboticstoolbox_python-0.10.0-cp38-cp38-manylinux2010_x86_64.whl (437.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.12+ x86-64

roboticstoolbox_python-0.10.0-cp38-cp38-macosx_10_14_x86_64.whl (383.9 kB view details)

Uploaded CPython 3.8macOS 10.14+ x86-64

roboticstoolbox_python-0.10.0-cp37-cp37m-win_amd64.whl (395.9 kB view details)

Uploaded CPython 3.7mWindows x86-64

roboticstoolbox_python-0.10.0-cp37-cp37m-manylinux2010_x86_64.whl (438.4 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.12+ x86-64

roboticstoolbox_python-0.10.0-cp37-cp37m-macosx_10_14_x86_64.whl (383.7 kB view details)

Uploaded CPython 3.7mmacOS 10.14+ x86-64

roboticstoolbox_python-0.10.0-cp36-cp36m-win_amd64.whl (395.9 kB view details)

Uploaded CPython 3.6mWindows x86-64

roboticstoolbox_python-0.10.0-cp36-cp36m-manylinux2010_x86_64.whl (436.1 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.12+ x86-64

roboticstoolbox_python-0.10.0-cp36-cp36m-macosx_10_14_x86_64.whl (383.7 kB view details)

Uploaded CPython 3.6mmacOS 10.14+ x86-64

File details

Details for the file roboticstoolbox-python-0.10.0.tar.gz.

File metadata

  • Download URL: roboticstoolbox-python-0.10.0.tar.gz
  • Upload date:
  • Size: 283.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for roboticstoolbox-python-0.10.0.tar.gz
Algorithm Hash digest
SHA256 be14f5fe2e35e1871589703c834cc2dcd62e5d05832a46146df9f355850f8c45
MD5 3c1cddfac1b1b79125e1dc1e74b62abb
BLAKE2b-256 fa53f8ac165e0b6ae5eecf33854e10f8670875145a5b5dae15dec5d3e40c7a11

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 395.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 8c6b6812123ac9a064006dc2ea45ac6d35ae30bcc5dbd6b86ad2a1e5ed22256d
MD5 0068ef8c47519c354ee6ebd4b868542d
BLAKE2b-256 05bd6d85654daa9e52f3539f4b7d8860c80627b1e97b8877d2d4b7eef2e125d0

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp39-cp39-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 383.9 kB
  • Tags: CPython 3.9, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.9.4

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 c62e3730c1a28d60580e9128fb5669bd720de70bd64c094b2fd90db6a6d4a5c6
MD5 0acd082d265564d8cf8964c3c56c6a0d
BLAKE2b-256 edde169ae91ad3c002205913562fc25ea3339db9a1f34b87eb149ec523c6534c

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 395.9 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 7655adef60b940bc5a809aa2129418410602fec3ba034e722b78086c4ba31a14
MD5 e4838cdf6b4acca0edd506c230c32c9e
BLAKE2b-256 036f3ebbc14a2d7fbf2fd94d771a3b09215856a9e9eb8a47f9695a5949bcb052

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 437.1 kB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a50726a07926e3399043baffa572a553210082074f6a24bd134ab21f61ae49f0
MD5 39d591265311ce99aefdde3c63760411
BLAKE2b-256 b8de05ce5d297b491c072b9826314df6d11dc54de997fe9a9fc18eadbc75b935

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp38-cp38-manylinux1_x86_64.whl
  • Upload date:
  • Size: 437.0 kB
  • Tags: CPython 3.8
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 84a93014a1b7e1666913a515d5f8109bfde71e1c02d213eda1735b02e21d88bc
MD5 31201d76c1986165dbcf656089a9ab67
BLAKE2b-256 75985e0fb38ea1f94f6159d72b64887cdb3adb28a92ad4e7992c988d1b322bc0

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp38-cp38-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 383.9 kB
  • Tags: CPython 3.8, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.8.9

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 02fac66775e068749996975bada0f6b9e244190af9feef6288df12b982f49a6f
MD5 f5291a3d14632c729024d81165d8ff53
BLAKE2b-256 c3f9d22ada42182bab1787dfdfc08c5ffebd2377b7c5ddad2ebd3fdf6544d60c

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 395.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.9

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 9f557e690a616866249aca937030b6a9f915bfa8eabeed234c9a987925c93f98
MD5 d43fa314e5b7ea289f974dc9289dba67
BLAKE2b-256 74ce8b2c97b99f386f3374a6f150a8d699d3a333c050a6561a3b9d55bbb9baf5

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 438.4 kB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c45f6a178a9370d527dadf63c792902f9fec072451cc47f942bdd80ff69ed259
MD5 75a35f9bf04c8aff8850727aefe26962
BLAKE2b-256 f4dd4744d7fa34928265f248771a57127a5646ac1b767986c18721b7273cbb42

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f094b90d77715f5368cec42aa90780e16642d018b530753fcbbbb00398dea47d
MD5 14ba749369ddc5986b3e7df44ae7104f
BLAKE2b-256 c8666164bcc5f87a4247ffabf7c0fd60175a43a83a5fc165e21dcf03acc47591

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp37-cp37m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 383.7 kB
  • Tags: CPython 3.7m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 17db9b1e4ba1e3cddaca7644395ad8e84306a0832aea0b09f5417906def3f6da
MD5 d5d3be279623dc379af08d5737fb13cd
BLAKE2b-256 e8019c8591900b31141b846c4192dbef9c3f1bf67165770582d648d987dd13b5

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 395.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.8

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 6070d6fa716ae6c85bc1a5c530b22deb7d75b51560c67d7346986968ef5a696f
MD5 0e58077111e90ae6dd3485e87b3414be
BLAKE2b-256 8c29b1d3bf57639a4ffd34d7127061dab716088adab226e4d15139920aec794a

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 436.1 kB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.7.10

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c4c800c1c0e03eed74e89f05cc0135111f3ee1b8932cf3a29ec2790fb8408c95
MD5 d206d9df0b34aaa52d0ac9f331da0dc9
BLAKE2b-256 dd606e5f038ea6a67b48d819004414805dcb1465717e00e2b27b783bf31b1874

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 01c1aa268f5451dcd20438a319156690ba60ef8d594ac3a758513b1ec9d6ea03
MD5 b1b252c484e8606e78980e7dee7dc86d
BLAKE2b-256 042c45fdd89308d572d3367931ef49bd89a4cb52cdb10a267f22e1fce5a77ae3

See more details on using hashes here.

File details

Details for the file roboticstoolbox_python-0.10.0-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

  • Download URL: roboticstoolbox_python-0.10.0-cp36-cp36m-macosx_10_14_x86_64.whl
  • Upload date:
  • Size: 383.7 kB
  • Tags: CPython 3.6m, macOS 10.14+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.0.1 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.60.0 CPython/3.6.13

File hashes

Hashes for roboticstoolbox_python-0.10.0-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b2be50cef15942e0d0a45df7e28caf432c850685bd62b2e1e33cbcdb96b05a2b
MD5 069e1e07c74f8f097fde996f11e8d0f5
BLAKE2b-256 46729dcb81148db6f7b414ea88a6780c3a53f5bbf574dc8b973e5e17c519e0de

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page