Skip to main content

The RWKV Language Model

Project description

The RWKV Language Model

https://rwkv.com

#
# !!! set these os.environ[] before import RWKV !!!
#
import os
os.environ["RWKV_V7_ON"] = '1' # ==> !!! enable RWKV-7 mode !!!
os.environ['RWKV_JIT_ON'] = '1' # '1' for better speed
os.environ["RWKV_CUDA_ON"] = '0' # '1' to compile CUDA kernel (10x faster prefilling), requires c++ compiler & cuda libraries

from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
#
# download models: https://huggingface.co/BlinkDL
# try strategy='cuda fp16' or 'cpu fp32'
#
model = RWKV(model='/mnt/e/RWKV-Runner/models/rwkv7-g1a-0.1b-20250728-ctx4096', strategy='cuda fp16') # Use '/' in model path, instead of '\'

pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # for "g" and "world" models
# pipeline = PIPELINE(model, "20B_tokenizer.json") # for "pile" models, 20B_tokenizer.json is in https://github.com/BlinkDL/ChatRWKV

ctx = "User: simulate SpaceX mars landing using python\n\nAssistant: <think"
print(ctx, end='')

# For alpha_frequency and alpha_presence, see "Frequency and presence penalties":
# https://platform.openai.com/docs/api-reference/parameter-details

args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.5, top_k = 100, # top_k = 0 then ignore
                     alpha_frequency = 0.0,
                     alpha_presence = 0.0,
                     alpha_decay = 0.997, # gradually decay the penalty
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [], # stop generation whenever you see any token here
                     chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)

def my_print(s):
    print(s, end='', flush=True)

pipeline.generate(ctx, token_count=500, args=args, callback=my_print)
print('\n')

# !!! model.forward(tokens, state) will modify state in-place !!!

out, state = model.forward([187, 510, 1563, 310, 247], None)
print(out.detach().cpu().numpy())                   # get logits
out, state = model.forward([187, 510], None)
out, state = model.forward([1563], state)           # RNN has state (use deepcopy to clone states)
out, state = model.forward([310, 247], state)
print(out.detach().cpu().numpy())                   # same result as above
print('\n')

Faster decoding (CUDAGraph, requires rwkv pip pkg v0.8.31+):

import os, time
import numpy as np
import torch
os.environ["RWKV_V7_ON"] = '1'
os.environ['RWKV_JIT_ON'] = '1'
os.environ["RWKV_CUDA_ON"] = '1' 
from rwkv.model import RWKV
from rwkv.utils import PIPELINE
model = RWKV(model='/mnt/e/RWKV-Runner/models/rwkv7-g1a-0.1b-20250728-ctx4096', strategy='cuda fp16')
pipeline = PIPELINE(model, "rwkv_vocab_v20230424")

LENGTH_PER_TRIAL = 256
TEMPERATURE = 1.0
TOP_P = 0.0
prompt = "User: simulate SpaceX mars landing using python\n\nAssistant: <think"

###############################################################################

print('='*80 + '\nSlow inference\n' + '='*80)
print(prompt, end="")

all_tokens = []
out_last = 0
out, state = model.forward(pipeline.encode(prompt), None)

times = []
all_times = []
t000 = time.perf_counter()
for i in range(LENGTH_PER_TRIAL):
    t00 = time.perf_counter()
    token = pipeline.sample_logits(out, temperature=TEMPERATURE, top_p=TOP_P)
    all_tokens += [token]

    tmp = pipeline.decode(all_tokens[out_last:])
    if '\ufffd' not in tmp:
        print(tmp, end="", flush=True) # only print when we have a valid utf-8 string
        out_last = i+1    

    torch.cuda.synchronize()
    t0 = time.perf_counter()

    out, state = model.forward(token, state)

    torch.cuda.synchronize()
    t1 = time.perf_counter()
    times.append(t1 - t0)
    all_times.append(t1 - t00)
times = np.percentile(times, 50)
all_times = np.percentile(all_times, 50)
print(f'\n\nToken/s = {round(1/times,2)} (forward), {round(1/all_times,2)} (full)')

###############################################################################

print('='*80 + '\nFast inference (CUDAGraph, requires rwkv pip pkg v0.8.31+)\n' + '='*80)
print(prompt, end="")

all_tokens = []
out_last = 0
state = model.generate_zero_state()

static_input = torch.empty((model.n_embd), device="cuda", dtype=torch.half)
static_state_in = [torch.empty_like(x, device="cuda") for x in state]
static_state_out = [torch.empty_like(x, device="cuda") for x in state]
static_output = torch.empty((model.args.vocab_size), device="cuda", dtype=torch.half)
g = torch.cuda.CUDAGraph()
with torch.cuda.graph(g):
    static_output, static_state_out = model.forward_one_alt(static_input, static_state_in)

out, state = model.forward(pipeline.encode(prompt), state)
for i in range(len(state)):
    static_state_in[i].copy_(state[i])
static_output.copy_(out)

times = []
all_times = []
t000 = time.perf_counter()
for i in range(LENGTH_PER_TRIAL):
    t00 = time.perf_counter()
    token = pipeline.sample_logits(static_output, temperature=TEMPERATURE, top_p=TOP_P)
    all_tokens += [token]

    tmp = pipeline.decode(all_tokens[out_last:])
    if '\ufffd' not in tmp:
        print(tmp, end="", flush=True) # only print when we have a valid utf-8 string
        out_last = i+1

    torch.cuda.synchronize()
    t0 = time.perf_counter()

    static_input.copy_(model.z['emb.weight'][token])
    g.replay()
    for n in range(len(state)):
        static_state_in[n].copy_(static_state_out[n])
    
    torch.cuda.synchronize()
    t1 = time.perf_counter()
    times.append(t1 - t0)
    all_times.append(t1 - t00)
times = np.percentile(times, 50)
all_times = np.percentile(all_times, 50)
print(f'\n\nToken/s = {round(1/times,2)} (forward), {round(1/all_times,2)} (full) (note: very inefficient sample_logits)')

Old readme:

########################################################################################################
#
# For RWKV-4/5/6 models:
#
# Use '/' in model path, instead of '\'. Use ctx4096 models if you need long ctx.
#
# fp16 = good for GPU
# fp32 = good for CPU
# bf16 = supports CPU
# xxxi8 (example: fp16i8, fp32i8) = xxx with int8 quantization to save 50% VRAM/RAM, slower, slightly less accuracy
#
# We consider [ln_out+head] to be an extra layer, so L12-D768 (169M) has "13" layers, L24-D2048 (1.5B) has "25" layers, etc.
# Strategy Examples: (device = cpu/cuda/cuda:0/cuda:1/...)
# 'cpu fp32' = all layers cpu fp32
# 'cuda fp16' = all layers cuda fp16
# 'cuda fp16i8' = all layers cuda fp16 with int8 quantization
# 'cuda fp16i8 *10 -> cpu fp32' = first 10 layers cuda fp16i8, then cpu fp32 (increase 10 for better speed)
# 'cuda:0 fp16 *10 -> cuda:1 fp16 *8 -> cpu fp32' = first 10 layers cuda:0 fp16, then 8 layers cuda:1 fp16, then cpu fp32
#
# Basic Strategy Guide: (fp16i8 works for any GPU)
# 100% VRAM = 'cuda fp16'                   # all layers cuda fp16
#  98% VRAM = 'cuda fp16i8 *1 -> cuda fp16' # first 1 layer  cuda fp16i8, then cuda fp16
#  96% VRAM = 'cuda fp16i8 *2 -> cuda fp16' # first 2 layers cuda fp16i8, then cuda fp16
#  94% VRAM = 'cuda fp16i8 *3 -> cuda fp16' # first 3 layers cuda fp16i8, then cuda fp16
#  ...
#  50% VRAM = 'cuda fp16i8'                 # all layers cuda fp16i8
#  48% VRAM = 'cuda fp16i8 -> cpu fp32 *1'  # most layers cuda fp16i8, last 1 layer  cpu fp32
#  46% VRAM = 'cuda fp16i8 -> cpu fp32 *2'  # most layers cuda fp16i8, last 2 layers cpu fp32
#  44% VRAM = 'cuda fp16i8 -> cpu fp32 *3'  # most layers cuda fp16i8, last 3 layers cpu fp32
#  ...
#   0% VRAM = 'cpu fp32'                    # all layers cpu fp32
#
# Use '+' for STREAM mode, which can save VRAM too, and it is sometimes faster
# 'cuda fp16i8 *10+' = first 10 layers cuda fp16i8, then fp16i8 stream the rest to it (increase 10 for better speed)
#
# Extreme STREAM: 3G VRAM is enough to run RWKV 14B (slow. will be faster in future)
# 'cuda fp16i8 *0+ -> cpu fp32 *1' = stream all layers cuda fp16i8, last 1 layer [ln_out+head] cpu fp32
#
# ########################################################################################################

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rwkv-0.8.31.tar.gz (409.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

rwkv-0.8.31-py3-none-any.whl (410.9 kB view details)

Uploaded Python 3

File details

Details for the file rwkv-0.8.31.tar.gz.

File metadata

  • Download URL: rwkv-0.8.31.tar.gz
  • Upload date:
  • Size: 409.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.13

File hashes

Hashes for rwkv-0.8.31.tar.gz
Algorithm Hash digest
SHA256 e485f44905071adbc606ed6443f2f911ca155fc34e1676cd46355d8504745133
MD5 94a5a18e51de435299645a570f77eaf3
BLAKE2b-256 af8d5b99d87a5a6f475e9d56bfbe6da7649c76092484803ea5b9126b1b524588

See more details on using hashes here.

File details

Details for the file rwkv-0.8.31-py3-none-any.whl.

File metadata

  • Download URL: rwkv-0.8.31-py3-none-any.whl
  • Upload date:
  • Size: 410.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.13

File hashes

Hashes for rwkv-0.8.31-py3-none-any.whl
Algorithm Hash digest
SHA256 ab2d587e11b83cf89dd3225b9937727ee2b7ff2667368a27873b5384ab590c5d
MD5 f517056160258923108919a19daf90fd
BLAKE2b-256 a2c10f4bcb9687f4cd59bda7efdc96d970adcf745da0ecf7d69a86d1b089d65b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page