Skip to main content

The RWKV Language Model

Project description

The RWKV Language Model

https://rwkv.com

#
# !!! set these os.environ[] before import RWKV !!!
#
import os
os.environ["RWKV_V7_ON"] = '1' # ==> !!! enable RWKV-7 mode !!!
os.environ['RWKV_JIT_ON'] = '1' # '1' for better speed
os.environ["RWKV_CUDA_ON"] = '0' # '1' to compile CUDA kernel (10x faster prefilling), requires c++ compiler & cuda libraries

from rwkv.model import RWKV
from rwkv.utils import PIPELINE, PIPELINE_ARGS
#
# download models: https://huggingface.co/BlinkDL
# try strategy='cuda fp16' or 'cpu fp32'
#
model = RWKV(model='/mnt/e/RWKV-Runner/models/rwkv7-g1a-0.1b-20250728-ctx4096', strategy='cuda fp16') # Use '/' in model path, instead of '\'

pipeline = PIPELINE(model, "rwkv_vocab_v20230424") # for "g" and "world" models
# pipeline = PIPELINE(model, "20B_tokenizer.json") # for "pile" models, 20B_tokenizer.json is in https://github.com/BlinkDL/ChatRWKV

ctx = "User: simulate SpaceX mars landing using python\n\nAssistant: <think"
print(ctx, end='')

# For alpha_frequency and alpha_presence, see "Frequency and presence penalties":
# https://platform.openai.com/docs/api-reference/parameter-details

args = PIPELINE_ARGS(temperature = 1.0, top_p = 0.5, top_k = 100, # top_k = 0 then ignore
                     alpha_frequency = 0.0,
                     alpha_presence = 0.0,
                     alpha_decay = 0.997, # gradually decay the penalty
                     token_ban = [], # ban the generation of some tokens
                     token_stop = [], # stop generation whenever you see any token here
                     chunk_len = 256) # split input into chunks to save VRAM (shorter -> slower)

def my_print(s):
    print(s, end='', flush=True)

pipeline.generate(ctx, token_count=4000, args=args, callback=my_print)
print('\n')

# !!! model.forward(tokens, state) will modify state in-place !!!

out, state = model.forward([187, 510, 1563, 310, 247], None)
print(out.detach().cpu().numpy())                   # get logits
out, state = model.forward([187, 510], None)
out, state = model.forward([1563], state)           # RNN has state (use deepcopy to clone states)
out, state = model.forward([310, 247], state)
print(out.detach().cpu().numpy())                   # same result as above
print('\n')

Old readme:

########################################################################################################
#
# For RWKV-4/5/6 models:
#
# Use '/' in model path, instead of '\'. Use ctx4096 models if you need long ctx.
#
# fp16 = good for GPU
# fp32 = good for CPU
# bf16 = supports CPU
# xxxi8 (example: fp16i8, fp32i8) = xxx with int8 quantization to save 50% VRAM/RAM, slower, slightly less accuracy
#
# We consider [ln_out+head] to be an extra layer, so L12-D768 (169M) has "13" layers, L24-D2048 (1.5B) has "25" layers, etc.
# Strategy Examples: (device = cpu/cuda/cuda:0/cuda:1/...)
# 'cpu fp32' = all layers cpu fp32
# 'cuda fp16' = all layers cuda fp16
# 'cuda fp16i8' = all layers cuda fp16 with int8 quantization
# 'cuda fp16i8 *10 -> cpu fp32' = first 10 layers cuda fp16i8, then cpu fp32 (increase 10 for better speed)
# 'cuda:0 fp16 *10 -> cuda:1 fp16 *8 -> cpu fp32' = first 10 layers cuda:0 fp16, then 8 layers cuda:1 fp16, then cpu fp32
#
# Basic Strategy Guide: (fp16i8 works for any GPU)
# 100% VRAM = 'cuda fp16'                   # all layers cuda fp16
#  98% VRAM = 'cuda fp16i8 *1 -> cuda fp16' # first 1 layer  cuda fp16i8, then cuda fp16
#  96% VRAM = 'cuda fp16i8 *2 -> cuda fp16' # first 2 layers cuda fp16i8, then cuda fp16
#  94% VRAM = 'cuda fp16i8 *3 -> cuda fp16' # first 3 layers cuda fp16i8, then cuda fp16
#  ...
#  50% VRAM = 'cuda fp16i8'                 # all layers cuda fp16i8
#  48% VRAM = 'cuda fp16i8 -> cpu fp32 *1'  # most layers cuda fp16i8, last 1 layer  cpu fp32
#  46% VRAM = 'cuda fp16i8 -> cpu fp32 *2'  # most layers cuda fp16i8, last 2 layers cpu fp32
#  44% VRAM = 'cuda fp16i8 -> cpu fp32 *3'  # most layers cuda fp16i8, last 3 layers cpu fp32
#  ...
#   0% VRAM = 'cpu fp32'                    # all layers cpu fp32
#
# Use '+' for STREAM mode, which can save VRAM too, and it is sometimes faster
# 'cuda fp16i8 *10+' = first 10 layers cuda fp16i8, then fp16i8 stream the rest to it (increase 10 for better speed)
#
# Extreme STREAM: 3G VRAM is enough to run RWKV 14B (slow. will be faster in future)
# 'cuda fp16i8 *0+ -> cpu fp32 *1' = stream all layers cuda fp16i8, last 1 layer [ln_out+head] cpu fp32
#
# ########################################################################################################

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

rwkv-0.8.30.tar.gz (407.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

rwkv-0.8.30-py3-none-any.whl (410.0 kB view details)

Uploaded Python 3

File details

Details for the file rwkv-0.8.30.tar.gz.

File metadata

  • Download URL: rwkv-0.8.30.tar.gz
  • Upload date:
  • Size: 407.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.13

File hashes

Hashes for rwkv-0.8.30.tar.gz
Algorithm Hash digest
SHA256 e705618d1764a891c53ecb4b3463a621ebb99af0b4d316553e64c45ceb3634b3
MD5 f16488fec15e0d759f7406e64838cbf0
BLAKE2b-256 7938708c06ac8ca9ec17efeb1b851a7bca83bbd5376eae867991a0b61fa28922

See more details on using hashes here.

File details

Details for the file rwkv-0.8.30-py3-none-any.whl.

File metadata

  • Download URL: rwkv-0.8.30-py3-none-any.whl
  • Upload date:
  • Size: 410.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.0.1 CPython/3.10.13

File hashes

Hashes for rwkv-0.8.30-py3-none-any.whl
Algorithm Hash digest
SHA256 463f8958f968da93b7a071aa14461d2fde1a4634167ba56b5c75fe60325b528d
MD5 3767c54242fad3d1ec4c677a8f92d15d
BLAKE2b-256 d49953bf4bc620a74eac6434a7eaf35316d85b83e6eb6ae0baed33683eeec9e9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page