Skip to main content

Sam media anomaly detector library

Project description

This repository is responsible for forecasting today's data based on given historical data

.. code:: python
import pandas as pd
from psycopg2 import connect
from sam_anomaly_detector import Forecaster
df_data = pd.read_csv('dataset.csv', columns=['ds', 'y'])
json_data = json_data = df_data.to_json(orient='records')
anomalies = Detector().forecast_today(dataset=json_data)
print(anomalies)


- Input data should be a panda DataFrame having time and aggregated data
- Passed columns to forecaster should be 'ds' for 'time' and 'y' for 'aggregated data'
- Output is a panda DataFrame of anomalies. Important columns are:
- actual: today's actual value
- yhat_lower: forecast lower boundary
- yhat: : forecastted value
- yhat_upper: forecast upper boundary
- std: standard diviation from boundaries. negative value means how far it is from 'yhat_lower',
positive value means how far it is from 'yhat_upper'


Project details


Release history Release notifications

History Node

2.2

History Node

2.1

History Node

2.0

History Node

1.9

History Node

1.8

History Node

1.7

History Node

1.6

History Node

1.5

History Node

1.4

History Node

1.3

History Node

1.2

History Node

1.1

This version
History Node

1.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
sam_anomaly_detector-1.0-py3-none-any.whl (5.7 kB) Copy SHA256 hash SHA256 Wheel py3 Feb 14, 2018
sam_anomaly_detector-1.0.tar.gz (7.8 kB) Copy SHA256 hash SHA256 Source None Feb 14, 2018

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging CloudAMQP CloudAMQP RabbitMQ AWS AWS Cloud computing Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page