Pixelwise binarization with selectional auto-encoders in Keras
Project description
Binarization
Binarization for document images
Examples
Introduction
This tool performs document image binarization using trained models. The method is based on Calvo-Zaragoza and Gallego, 2018.
Installation
Clone the repository, enter it and run
pip install .
Models
Pre-trained models can be downloaded from here:
https://qurator-data.de/sbb_binarization/
Usage
sbb_binarize \
--patches \
-m <path to directory containing model files> \
<input image> \
<output image>
Note In virtually all cases, applying the --patches
flag will improve the quality of results.
Example
sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif
To use the OCR-D interface:
ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
sbb_binarization-0.0.10.tar.gz
(10.9 kB
view details)
Built Distribution
File details
Details for the file sbb_binarization-0.0.10.tar.gz
.
File metadata
- Download URL: sbb_binarization-0.0.10.tar.gz
- Upload date:
- Size: 10.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c307fe8a825bf064f626fd58b0adf2474883e547dde592fa2e497487c598ae2 |
|
MD5 | 0b35a13cec770ee8a4151365fd2a459b |
|
BLAKE2b-256 | 61502db816eaedc0df0ab8bc0df7f3af5a771a723a812ed348b4458e07a4119c |
File details
Details for the file sbb_binarization-0.0.10-py3-none-any.whl
.
File metadata
- Download URL: sbb_binarization-0.0.10-py3-none-any.whl
- Upload date:
- Size: 12.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 97ca18511547e672a5c0bb27257546e2a091f47e758df01796794e45880c0d25 |
|
MD5 | 07d32ed1c99480cb812012d1a7ee4e3a |
|
BLAKE2b-256 | 392fa77db40960310911a26cf6cb3f18f6a54a03c42c2c2bf0a63d1380ae2dc9 |