Skip to main content

Pixelwise binarization with selectional auto-encoders in Keras

Project description

Binarization

Binarization for document images

Examples

Introduction

This tool performs document image binarization using trained models. The method is based on Calvo-Zaragoza and Gallego, 2018.

Installation

Clone the repository, enter it and run

pip install .

Models

Pre-trained models can be downloaded from here:

https://qurator-data.de/sbb_binarization/

Usage

sbb_binarize \
  --patches \
  -m <path to directory containing model files> \
  <input image> \
  <output image>

Note In virtually all cases, applying the --patches flag will improve the quality of results.

Example

sbb_binarize --patches -m /path/to/models/ myimage.tif myimage-bin.tif

To use the OCR-D interface:

ocrd-sbb-binarize --overwrite -I INPUT_FILE_GRP -O OCR-D-IMG-BIN -P model "/var/lib/sbb_binarization"

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sbb_binarization-0.0.10.tar.gz (10.9 kB view details)

Uploaded Source

Built Distribution

sbb_binarization-0.0.10-py3-none-any.whl (12.6 kB view details)

Uploaded Python 3

File details

Details for the file sbb_binarization-0.0.10.tar.gz.

File metadata

  • Download URL: sbb_binarization-0.0.10.tar.gz
  • Upload date:
  • Size: 10.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9

File hashes

Hashes for sbb_binarization-0.0.10.tar.gz
Algorithm Hash digest
SHA256 7c307fe8a825bf064f626fd58b0adf2474883e547dde592fa2e497487c598ae2
MD5 0b35a13cec770ee8a4151365fd2a459b
BLAKE2b-256 61502db816eaedc0df0ab8bc0df7f3af5a771a723a812ed348b4458e07a4119c

See more details on using hashes here.

File details

Details for the file sbb_binarization-0.0.10-py3-none-any.whl.

File metadata

  • Download URL: sbb_binarization-0.0.10-py3-none-any.whl
  • Upload date:
  • Size: 12.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/34.0 requests/2.27.0 requests-toolbelt/0.9.1 urllib3/1.26.9 tqdm/4.64.0 importlib-metadata/4.8.3 keyring/23.4.1 rfc3986/1.5.0 colorama/0.4.4 CPython/3.6.9

File hashes

Hashes for sbb_binarization-0.0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 97ca18511547e672a5c0bb27257546e2a091f47e758df01796794e45880c0d25
MD5 07d32ed1c99480cb812012d1a7ee4e3a
BLAKE2b-256 392fa77db40960310911a26cf6cb3f18f6a54a03c42c2c2bf0a63d1380ae2dc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page