Skip to main content

Remote Sensing Tools

Project description

scikit-eo: A Python package for Remote Sensing Data Analysis

Google Colab License: MIT PythonVersion PyPI version Youtube Downloads Downloads

Journal of Open Source Software

Citation

Please, to cite the scikit-eo package in publications, use this paper:

Tarazona, Y., Benitez-Paez, F., Nowosad, J., Drenkhan, F., and Timaná, M. (2024). scikit-eo: A Python package for Remote Sensing Data Analysis. Journal of Open Source Software, 9(99), 6692. DOI: 10.21105/joss.06692

🌍🛰️🚀 NEW: Deep Learning Segmentation

Introduction

Nowadays, remotely sensed data has increased dramatically. Microwaves and optical images with different spatial and temporal resolutions are available and are used to monitor a variety of environmental issues such as deforestation, land degradation, land use and land cover change, among others. Although there are efforts (i.e., Python packages, forums, communities, etc.) to make available line-of-code tools for pre-processing, processing and analysis of satellite imagery, there is still a gap that needs to be filled. In other words, too much time is still spent by many users developing Python lines of code. Algorithms for mapping land degradation through a linear trend of vegetation indices, fusion optical and radar images to classify vegetation cover, and calibration of machine learning algorithms, among others, are not available yet.

Therefore, scikit-eo is a Python package that provides tools for remote sensing. This package was developed to fill the gaps in remotely sensed data processing tools. Most of the tools are based on scientific publications, and others are useful algorithms that will allow processing to be done in a few lines of code. With these tools, the user will be able to invest time in analyzing the results of their data and not spend time on elaborating lines of code, which can sometimes be stressful.

Tools for Remote Sensing

Name of functions/classes Description
mla Machine Learning (Random Forest, Support Vector Machine, Decition Tree, Naive Bayes, Neural Network, etc.)
calmla Calibrating supervised classification in Remote Sensing (e.g., Monte Carlo Cross-Validation, Leave-One-Out Cross-Validation, etc.)
confintervalML Information of confusion matrix by proportions of area, overall accuracy, user's accuracy with confidence interval and estimated area with confidence interval as well.
rkmeans K-means classification.
calkmeans This function allows to calibrate the kmeans algorithm. It is possible to obtain the best k value and the best embedded algorithm in kmeans.
pca Principal Components Analysis.
atmosCorr Atmospheric Correction of satellite imagery.
deepLearning Deep Learning algorithms.
linearTrend Linear trend is useful for mapping forest degradation or land degradation.
fusionrs This algorithm allows to fuse images coming from different spectral sensors (e.g., optical-optical, optical and SAR or SAR-SAR). Among many of the qualities of this function, it is possible to obtain the contribution (%) of each variable in the fused image.
sma Spectral Mixture Analysis - Classification sup-pixel.
tassCap The Tasseled-Cap Transformation.

You will find more algorithms!.

Dependencies used by scikit-eo

All dependencies used by scikit-eo are as follows:

numpy, pandas, matplotlib, rasterio, seaborn, statsmodels, scikit-learn, scipy, pytest, dbfread, fiona and geopandas. By installing scikit-eo all these packages will be installed!.

Installation

To use scikit-eo it is necessary to install it. There are two options:

1. From PyPI

scikit-eo is available on PyPI, so to install it, run this command in your terminal:

pip install scikeo

2. Installing from source

It is also possible to install the latest development version directly from the GitHub repository with:

pip install git+https://github.com/yotarazona/scikit-eo

containerizing scikit-eo

Note: It is a recommended practice to provide some instructions for isolating/containerizing scikit-eo. It would benefit their use and thus avoid that some dependencies are not compatible with others. For example, conda provides an easy solution.

conda create -n scikiteo python = 3.8

Then, activate the environment created

conda activate scikiteo

Then finally, scikit-eo can be install within this new environment using via PyPI or from the GitHub repository.

Example

1.0 Applying Machine Learning

Libraries to be used:

import rasterio
import numpy as np
from scikeo.mla import MLA
from scikeo.process import extract
import matplotlib.pyplot as plt
import matplotlib as mpl
import geopandas as gpd
from scikeo.plot import plotRGB
from scikeo.writeRaster import writeRaster

2.0 Optical image

Landsat-8 OLI (Operational Land Imager) will be used to obtain in order to classify using Random Forest (RF). This image, which is in surface reflectance with bands:

  • Blue -> B2
  • Green -> B3
  • Red -> B4
  • Nir -> B5
  • Swir1 -> B6
  • Swir2 -> B7

This image will be downloaded using the following codes:

import requests, zipfile
from io import BytesIO

# Defining the zip file URL
url = 'https://github.com/yotarazona/data/raw/main/data/01_machine_learning.zip'

# Split URL to get the file name
filename = url.split('/')[-1]

# Downloading the file by sending the request to the URL
req = requests.get(url)

# extracting the zip file contents
file = zipfile.ZipFile(BytesIO(req.content))
file.extractall()

3.0 Supervised Classification using Random Forest

Image and endmembers

data_dir = "01_machine_learning/"

# satellite image
path_raster = data_dir + "LC08_232066_20190727_SR.tif"
img = rasterio.open(path_raster)

# endmembers
path_endm = data_dir + "endmembers.shp"
endm = gpd.read_file(path_endm)
# endmembers
endm = extract(img, endm)
endm

header

Instance of mla():

inst = MLA(image = img, endmembers = endm)

Applying Random Forest:

svm_class = inst.SVM(training_split = 0.7)

4.0 Results

Dictionary of results

svm_class.keys()

Overall accuracy

svm_class.get('Overall_Accuracy')

Kappa index

svm_class.get('Kappa_Index')

Confusion matrix or error matrix

svm_class.get('Confusion_Matrix')

header

Preparing the image before plotting

# Let's define the color palette
palette = mpl.colors.ListedColormap(["#2232F9","#F922AE","#229954","#7CED5E"])

Applying the plotRGB() algorithm is easy:

# Let´s plot
fig, axes = plt.subplots(nrows = 1, ncols = 2, figsize = (15, 9))

# satellite image
plotRGB(img, title = 'Image in Surface Reflectance', ax = axes[0])

# class results
axes[1].imshow(svm_class.get('Classification_Map'), cmap = palette)
axes[1].set_title("Classification map")
axes[1].grid(False)

header

This result shows us how we can use the scikit-eo python package in order to obtaind a Land Cover map. Following this tutorial is it possible to use different algorithms such as Support Vector Machine, Decision Tree, Neural Networks, amont others.

  • Free software: Apache Software License 2.0
  • Documentation:

Acknowledgment

Special thanks to:

Credits

This package was created with Cookiecutter

Logo inspiration

The logo on the package is inspired by fog oasis known as "lomas".

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikeo-0.2.47.tar.gz (49.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

scikeo-0.2.47-py2.py3-none-any.whl (48.7 kB view details)

Uploaded Python 2Python 3

File details

Details for the file scikeo-0.2.47.tar.gz.

File metadata

  • Download URL: scikeo-0.2.47.tar.gz
  • Upload date:
  • Size: 49.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for scikeo-0.2.47.tar.gz
Algorithm Hash digest
SHA256 18cbc4fbc14aad2f038b7fec3699ab01a16e49f8ff13a6c8cadd04779e201669
MD5 bbe3d2ed80f2d457df25b9cb8f2f824a
BLAKE2b-256 4e28d6fad3355da3902bcb91fddf3fa9cc147634ab3f5b95ca10eba20b0fda38

See more details on using hashes here.

Provenance

The following attestation bundles were made for scikeo-0.2.47.tar.gz:

Publisher: pypi.yml on yotarazona/scikit-eo

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

File details

Details for the file scikeo-0.2.47-py2.py3-none-any.whl.

File metadata

  • Download URL: scikeo-0.2.47-py2.py3-none-any.whl
  • Upload date:
  • Size: 48.7 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/6.1.0 CPython/3.13.7

File hashes

Hashes for scikeo-0.2.47-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 c50f7d19401edfb1f44bcdd9e81d15c9615f8d0b539a32736026b6c53af44140
MD5 872ec543f67c2470456cdfd3d6883751
BLAKE2b-256 d4c3082f6f8d382ba3fb93d1a627609672ca8c4addec7a5622ecea733326327f

See more details on using hashes here.

Provenance

The following attestation bundles were made for scikeo-0.2.47-py2.py3-none-any.whl:

Publisher: pypi.yml on yotarazona/scikit-eo

Attestations: Values shown here reflect the state when the release was signed and may no longer be current.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page