A set of python modules for cyclist using powermeters.
Project description
Installation
Dependencies
Scikit-cycling requires:
scipy
numpy
pandas
six
fit-parse
joblib
scikit-learn
Installation
scikit-cycling is currently available on the PyPi’s reporitories and you can install it via pip:
pip install -U scikit-cycling
The package is release also in conda-forge:
conda install -c conda-forge scikit-cycling
If you prefer, you can clone it and run the setup.py file. Use the following commands to get a copy from Github and install all dependencies:
git clone https://github.com/scikit-cycling/scikit-cycling.git cd scikit-cycling pip install .
Or install using pip and GitHub:
pip install -U git+https://github.com/scikit-cycling/scikit-cycling.git
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scikit-cycling-0.1.3.tar.gz
(937.5 kB
view hashes)
Built Distributions
Close
Hashes for scikit_cycling-0.1.3-cp36-cp36m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8fe30077ab36b880eecd7d7ffc98031761e5b4c027ee25e5d9d72cce9036746f |
|
MD5 | bd4abfe904b39c4517317a1c3f686e69 |
|
BLAKE2b-256 | 558912fae66709e2fbcb5945053ec45a8677193b00a1af87983ceaedabf75c21 |
Close
Hashes for scikit_cycling-0.1.3-cp36-cp36m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | bafc31d16f45eb868e4156efc8ad8780a0302223ea0b504e15cf4795125d47f8 |
|
MD5 | f1262e473032963dce5340a41ef7822b |
|
BLAKE2b-256 | 2510bd31c2c524ecac1b85c34e60904ec13e00e05c8a42b298e75521e1fe88bd |
Close
Hashes for scikit_cycling-0.1.3-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4a56a693af794ea6ee3618a5dd28621fb721308632bf9ca6bc45f9509ac4d2dc |
|
MD5 | 8095951a1243e8d9e8a66c510335fbd0 |
|
BLAKE2b-256 | 739f4ddb5d74057ce113fda99ef41124024764a54731dbfcb99e5035406fd999 |
Close
Hashes for scikit_cycling-0.1.3-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 95745834742fd2241ab345d953a4031f2aa770f13c6c7467dab2b0a399d0fdb4 |
|
MD5 | 25506f7ba7915462ab80f8eaf005ea9e |
|
BLAKE2b-256 | 049883e4e0744855b480ca212cdc937e8f56f226ca6d9261b85855b792e938d5 |
Close
Hashes for scikit_cycling-0.1.3-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 367a4d7a2fd0e0b71bf2fd08124c524ed507d6c07b0321866c67f8a7c2102941 |
|
MD5 | db1670d92d444c052251182500a2dd23 |
|
BLAKE2b-256 | d8d4a0ad53b1c25bba4a178c4483effc239bb935ad2201925fc64db9f0221ad6 |
Close
Hashes for scikit_cycling-0.1.3-cp35-cp35m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8ec1a299b1eec8ff88770044b7361259cef51eb3a44966c497ca1c4234ba7a13 |
|
MD5 | 67ed222b1e33a188281ca0aa3994d666 |
|
BLAKE2b-256 | c2357bc026569e8390e987f119ce6289e597ec8102957d1c0b811e1964f09562 |
Close
Hashes for scikit_cycling-0.1.3-cp35-cp35m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7cee2a9bdb6a9ad0bb7c72280a8fbd8e45c13f8909bcb91bfbfeb9016fa24af3 |
|
MD5 | ab2dbaabfc4ea65d30cab500a0121560 |
|
BLAKE2b-256 | 3c179e90f873bc530dec74a713f1cc28854a9defaad72b792853c152f34ff6f8 |
Close
Hashes for scikit_cycling-0.1.3-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 438b1a32f6854874ec1aa4a3526ac57fa344c4dae9680a4e0a9313455fa70d63 |
|
MD5 | 20af275f4df3e91ab7e0b63a969312f6 |
|
BLAKE2b-256 | bc29f0672790f75bb09fecea6c4c35d7ab995b82e59842851c5c105ff56664c0 |
Close
Hashes for scikit_cycling-0.1.3-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9746e597784a98f9fe541209a5729adae97f780b12f2258c988ea05c8a865e09 |
|
MD5 | 2b2ab31f65758defb877b9e4b7d484e9 |
|
BLAKE2b-256 | add2d0ed02afeb11a2860a6d499c4f78996304ad1646cd547dc74ea35a07f255 |
Close
Hashes for scikit_cycling-0.1.3-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37e65e6089257fe61962dc0027251fc161d8343fbc70b4238b6ef7b791761dfe |
|
MD5 | 326a93ff9ef3086b19364a976dbcb489 |
|
BLAKE2b-256 | a1aec47662f94d852d1411e01ece340e394b027076361f2c99fcca0e1835c3e4 |
Close
Hashes for scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 76054fb36907b499b8d5c03bda503186bd4a9274918d481bdd366cec31c07c35 |
|
MD5 | 91ff678fcf3f5470801ac7856e1979ee |
|
BLAKE2b-256 | 948ada53ff441904003bad372b5f4877db184d962e28dfcce90ec36236d9b820 |
Close
Hashes for scikit_cycling-0.1.3-cp27-cp27mu-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b376d6f3db02d4c179a7088691c2a0ea2893537eb100f64af102d9692c5dcce |
|
MD5 | 4c493f37bd31813c455457d43f0f29d2 |
|
BLAKE2b-256 | 630fc1021c33fd5e932232887e1bd5ffc3576a21983d72a6833314f6075a9b44 |
Close
Hashes for scikit_cycling-0.1.3-cp27-cp27m-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8cde092227059d12f614319a6143e6fc22083405204697311abaae4e20827bc8 |
|
MD5 | 72c198fb22a8f2586d409763387ad3b5 |
|
BLAKE2b-256 | aa5265a6ef00be1e973dbaa9d618cd1acdd1a4b94cfec4b1fabecd7ce0828e37 |
Close
Hashes for scikit_cycling-0.1.3-cp27-cp27m-win32.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2a7dc45c795c10584f893596e78ab2928a43e4084e7dca073df441405a8699ad |
|
MD5 | 396e1ab857a68b73e0737da4233eef04 |
|
BLAKE2b-256 | be9e4a1c6735927a9452676272abf02a24f5fac6f5371e8c3c6cd5aa867e4955 |
Close
Hashes for scikit_cycling-0.1.3-cp27-cp27m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3a4b2fe4493e78454deb80021fae832c1b8efef77a2e95959ee8aac32a48cc0f |
|
MD5 | 5384dc0ef248af6e79ef6a09bacdeba0 |
|
BLAKE2b-256 | 214f38b80071e02e6523e07442a9f90cc1955576b4614e3efda3c31af72384ef |
Close
Hashes for scikit_cycling-0.1.3-cp27-cp27m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | ac53fcaf8faf9857bcdeb4c0ba5d8cf966f20599beee2c57751f6a418b89aaab |
|
MD5 | 658886fb3e9a7b2f08c41bf6dc69ae30 |
|
BLAKE2b-256 | 9224f5d9b12f322c886118308613042c8ac3324a3a3bbdc1452533da250123bb |
Close
Hashes for scikit_cycling-0.1.3-cp27-cp27m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3424591e5b80c2c391417efa17c62f05fd90919a3e932a8a3c6fb2719a34cae5 |
|
MD5 | 8db0e1b555757fe8d161bfc7aca0dfc0 |
|
BLAKE2b-256 | 92a0282459a0e7e1fb1ecc054a6b2627e74081e958b1d7db59763406bc5f615e |