Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.17.9.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.17.9-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12Windows x86-64

scikit_digital_health-0.17.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.9-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

scikit_digital_health-0.17.9-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11Windows x86-64

scikit_digital_health-0.17.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.9-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

scikit_digital_health-0.17.9-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10Windows x86-64

scikit_digital_health-0.17.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.9-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

scikit_digital_health-0.17.9-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9Windows x86-64

scikit_digital_health-0.17.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.9-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.17.9.tar.gz.

File metadata

  • Download URL: scikit_digital_health-0.17.9.tar.gz
  • Upload date:
  • Size: 13.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.9.22

File hashes

Hashes for scikit_digital_health-0.17.9.tar.gz
Algorithm Hash digest
SHA256 47b0187a65c10c2cbc6748fba5eb74836a1ff57f7786f29fe3083b38c63ceaa0
MD5 3de76e1c0f1c305d2b00163a72666bbc
BLAKE2b-256 83738eeee329fcb37a90b86a880b08dc44b5ec51c3a9e681d03bfb5c3e61bdc7

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 19736d8e71b5ab546e77db3a3a436a618d5da96e9ce476d95b1de69008f07b35
MD5 d233e8100f74751f2ab0afba8a98cc00
BLAKE2b-256 925b678dc6818944e309c075831dbd677e53f8d585332fd3819d7966155dfc18

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9a68150c1a73b516918c26fc86c817a3d37a02b44f471231a7dcb6344e78c4b
MD5 3e2db45a4317d61c8f85d46c7734366a
BLAKE2b-256 ef6ab853077932361434fe6d8cfb1923c7e63c8e931224bb03be6f746823262a

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dd71d24be0de1645548a6600efa25d7c607333fc7a8745c371659a05fddbf79b
MD5 57ba3dca3f1a579a0cf49bc63c663e06
BLAKE2b-256 83d8088c165745143dbdf1246646f4d6c98a70d120fae082c82c5a68f8c794b9

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 81420a3ccacb7dcdcc57849729b05d540438903c1fc5a2e1e101d06a33369f37
MD5 6565db372d1e1de9e74929db073c576f
BLAKE2b-256 e65bab878a889107ec3d23d17ca969512a3525abc1e20a833689d4dcd3a494ec

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 91c1a1f6c3ba3c79d4c5e23a5f26cdb37a88978991d0e74ec7bc712f15909da7
MD5 3b8c959f27b0672591cc86b53cbef6b0
BLAKE2b-256 0600b304dcb50eed63c3fe6918a0b0151587191c90904521f137608cce9150f3

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32a5b2f716a54f16edadb264ae125ce0283e552f89b901bcb17cc040f7cd22b5
MD5 74e7dc1c7acc149d51458f74eeb188bf
BLAKE2b-256 667e705a4f8eb2fe8cd57bd8871aab409407033c913d86bae84c0924bce399eb

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 70fd295c91d7a97921c331334a29e7d42c65baf7182228011880f6436cfdbeb5
MD5 fa806c1081a440c5b7e1f4e56a8ac29d
BLAKE2b-256 6dec17b1b711e669f4b0dc410f6ea9682a2fc4467eb0c4c9a8c954fee70ad49a

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41f223796becd7777499acea4a90ef188135c216e3f1e15e5dc2a8fb178074bf
MD5 c002e5bff70aea3b9cbf9d7638e46aba
BLAKE2b-256 903c0633b9fad361d74c9aab76151e1582ba54005ebf86d0a6a0b9a616e547bc

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2c81eb3c129400f49124713a4ce96591828f7e804dc47ebdaef30c84e6aa7072
MD5 255cb44902a7cb80c3c74d9c4667a28b
BLAKE2b-256 b1063b8cf3a27b7cf919c6478c6017d05197b7f6a045470ae00d9dae9e0f1f88

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2c94a838493cffa25a79599cfbdc07cc10ba0ab9b914b1c9a249bbd33d79b0dd
MD5 4c195c9f6417144f9617a768958a5f70
BLAKE2b-256 b16375ae13197dd89a9177ea106b3c53240b15f9ea91d0d58803700c01359541

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06c6b22156e0eaca44f3b8ac0f87155085a7459ca44b69105eccefbf3addbeae
MD5 d5a2b0385b687680faf821d26820a0ca
BLAKE2b-256 de223a50b66deb4d2f1ac45c2dc4cb613b6ac87fbea63637f0a5e3137e9280c8

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 513e1539ca407138a34dc49aff9a0570cd10f8d3e338fd30397b5d050f1b461c
MD5 98e7497f36e60bbcf28736d717cdee24
BLAKE2b-256 3d80a82e81ffbf809ba75dca546222b1a52dd9ac0e57214abebc8d2a1fbab46a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page