Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.16.11.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.16.11-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.16.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.11-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.16.11-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.16.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.11-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.16.11-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.16.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.11-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.16.11-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.16.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.11-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.16.11.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11.tar.gz
Algorithm Hash digest
SHA256 129402f29a2267bfe4ae7d6211169cf0f2083271fe14c8698485c456853612fb
MD5 a61a20f8ce3dd2d0f01bec140b46dbd8
BLAKE2b-256 7c62e0e9ec952f9020c92ce6b7f9d7edce1701dd3463a3c08d775df68f6031e1

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 32bc4f382902a8c364d275d137c499ef4e2f441cd09470b0456c003672b4bdb0
MD5 86c5b8a8ed52bf40a386e2918e70a577
BLAKE2b-256 90cde026ea5da330c8462aa1615649d9ab8aefa2fab967163567ddd63e8d7a49

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 85994d9efddbd36543c3809d4a8772f677f2d7d4bdef67d6ed29bb71bf690ef5
MD5 83ff4b8b2fed856944f26a9cbdc1f0cc
BLAKE2b-256 af2813db21ca05eaea1e71c3fe7e06b30f577a487d59f16a7d910db52fef6940

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 398964c617e909e45d8a53c950c56ded6fde0ef4f5447eab6fba366074ee9025
MD5 c4154f2c8d7272f68cc4d0c88c08471d
BLAKE2b-256 0d574bc7deb95a3fcd81c657728e1b7f7d13a69197805d04e082fe8c586cf241

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 09919406c45ff0d19159864318b6aff8edd048407957c5274a59950df00ecc97
MD5 7de8fe5544ab0d7ed6eaac51bf557ece
BLAKE2b-256 4be53e27e4e6002fc74f7968ae17ad19a2eaba640037435d1c1b68551937676d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1b8ea560991d13b78c9c46db4389bd2a10c7a603e06d2c904a102869812d7d5c
MD5 c9dc512ccd5ed7a812a714c57c312045
BLAKE2b-256 4592184e58a9cbaed8df60d1b171113380a5f16e02063c60e95aaa0791f566e6

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3f1823ae35102d308c409fa2bbfae5266c142837b00f7ed91c0f513f948102ad
MD5 605622166204eab39abf2b8b69cab30b
BLAKE2b-256 d5fb4a3489692300a834dfdd86004adbbebd2792a8a81489f90dbd762571f2f8

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 94ea10c89e96f1664887497f2fd4531a06c09ec0fe40243f45e6ce0b0a3e78a3
MD5 f525c02c653d849149d488fe18f54976
BLAKE2b-256 5bb69ad1f27b116e888c35fa2ad02bbcc22ad7e2784992130532081eef0dd1e5

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 596a54fa40d7d4d8ba36a67183c3c4a08635bebb72af1f68b8cd92e2cb9d09ba
MD5 c9c128944dcbf943d0758e4d1921eff1
BLAKE2b-256 ef601e1110bfdfcfd3008c86ecb4ac75326e2ec191152f3607ae2936e3c7d84f

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f61f0b8405d5da4b3aef832db3e63361b5f969fd15ec0ee2a0ec6e8f726dc8c0
MD5 626cfa5285dff24995b765405c5f6130
BLAKE2b-256 86138f692bbcf8adf7e71ce8f26c89a42938eb29a4b8fe74d8d579d088304e33

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aa740ba13893bde51f8605ff4031ea4acc74fd56e9896124d2b00265fc3ecedc
MD5 525483d65352627cdb6282ad8e13725d
BLAKE2b-256 246e98cc3651514806b7924ffcb9ccb33de4d0f16b5a7608fd17c40cb8c160f0

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48b2a64d8fbc5df86abc84b765040ee1441eab25a933bc7a3cda132583988926
MD5 b95c58a9dd5a6c8625b81eef342f58a4
BLAKE2b-256 b961ce94531a5bfdc4a140f8240c246374f6aa04f61b82e1b654b34ad12961a5

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.11-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.11-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 30c46aa4897800ddb7d3abff823e81b989735189a90bbb0c506c0056de94a7ae
MD5 e57020cf535e386d69995428038ef7d0
BLAKE2b-256 04c5f06b19bbb652f195f074f5eab9c368e43a5fe4bc03f589c16eed025ef734

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page