Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.16.12.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.16.12-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.16.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.12-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.16.12-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.16.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.12-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.16.12-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.16.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.12-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.16.12-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.16.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.12-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.16.12.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12.tar.gz
Algorithm Hash digest
SHA256 9e8083c33090102484311f305f0f9bcdcbf3e61d8e3be97d4d9c1e918104c21e
MD5 3bd60fd7816124bb64e46c5f0469ebbf
BLAKE2b-256 5d8fa88251dcd60a09c8e6ccf05565e1ed46ba61167b19eb31ffbae65fab9518

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 fea19956096e4cb112739c496c17682f887514ae8eeb76d878a122ca0b69df2e
MD5 51b49a5b746c610c9f71738c99c3c061
BLAKE2b-256 7835a79786511227148d24cda4a3357a5ab0fd9a7313e62e7c0162005f879aa2

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 342de97797e25ceed2342fffaab53dea9514719627a425cef8df0925536fa518
MD5 a992f7388d82333ce75fc0b0f23bbf7a
BLAKE2b-256 dc915b6b5734f015965b0277ae4715609f8f54baeb824f42845f279a84a186bb

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d79e6cdf46821eda87dfb29eb9529c9ac13ed96c9c627bf506a74620d1e7eded
MD5 4b52f0d2c1c227846a7f05c2e2b37d6b
BLAKE2b-256 89eb585abcb6b63c26ed1c01a3569a841cace2bab0ff63af30a6a60a539dd7af

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f366a8007fd0c3ab154ba3854f4c7ad53e1f46daacdabd1afb6fb3718763d624
MD5 602feede21e8d010c540c1515ed4c1c6
BLAKE2b-256 494abb2196f4ac7efd85efce30ec6739ac9cb6cca071986a00e3b3078b9fc9f6

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba79f696d271fc9bf1ad7c73299ec3026a318624817c5516ff6edfdbef8c08e5
MD5 1f9fe14ef1d5808321eaefba7b1ed3eb
BLAKE2b-256 7774d2389889bf29cb7b71d9a71ca2aed2e66c3afe52b6e8682d440c711ac2ad

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 26c220e39da0da6a1e578130ec74d0e2cb048c87e58d18fa0b3d15c85f9710c0
MD5 32b83ad53a21efbd6c09efd9afd8392e
BLAKE2b-256 132a273892ab2e997dcfc47113728b205032ca3fe9ec4e87209db99c1ebecfc9

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a2aec82cb3895280cb3e1ef14ac18079d7acc1947bee060fb4d8b25e3d9f8128
MD5 df6ac807d994c91365d6438fe1f9b9fa
BLAKE2b-256 969ba717d776213537bf1ffb152612e085f6d93bb04c4d12d8a168a19bd845a9

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 53ee8c494e690b9195fd5550568eb6ccb82d59cfea902715d902629e96174dd1
MD5 cd6304cdbf3370c187b4de31fafb1d96
BLAKE2b-256 1f34570bd30c90077c4ed32fba2fbe738ac3c2ad8c3425f2bbec07195e1dc7a2

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c158f3a8c143611ea23690754820815344693c8a2f31931f9700dc2faf5c17dc
MD5 0022573c6f885af13f061f63af09b06d
BLAKE2b-256 9c277864a038190b7398e2b4e923e760549b66e3ad773887e97d3e3f2a64b213

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 3543c31c53de3a5250ed1a63541e9ae126d540acc5994fc8c55da9b799e08e2a
MD5 57278f87950c9892f31588818c49ee3d
BLAKE2b-256 f445c590c8cabd34ace31a2e18f6bbd2e17292a2410d4b6b2e9603d8b6d6700c

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33e8d826ede2a1253eaba7ced1941dfa8df84defb265d4ddfca30c24855d0704
MD5 fc255bf50610e8d4e63323645df55398
BLAKE2b-256 968cba1a5389875e3fe70a6df68dc2af238b9ad097064e0e353c421f8e5b42a7

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 05464dfe483cdc196da38aed0e461a893e8196c36a2889e572864243a6c1d67f
MD5 74fdeb3c598b7f3af72f46a211669a79
BLAKE2b-256 3309745a0fe8c0fc1ad7d3e18fee30171121356b3426b2e7cd8947f1407295e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page