Python general purpose human motion inertial data processing package.
Project description
Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.
- Documentation: https://scikit-digital-health.readthedocs.io/en/latest/
- Bug reports: https://github.com/PfizerRD/scikit-digital-health/issues
- Contributing: https://scikit-digital-health.readthedocs.io/en/latest/src/dev/contributing.html
SKDH provides the following:
- Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
- Preprocessing of accelerometer data
- Common time-series signal features
- Common time-series/inertial data analysis functions
- Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)
Availability
SKDH is available on both conda-forge
and PyPI
.
conda install scikit-digital-health -c conda-forge
or
pip install scikit-digital-health
[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.
[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587
Build Requirements
As of 0.9.15, Scikit Digital Health is built using Meson.
Citation
If you use SKDH in your research, please include the following citation:
[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file scikit_digital_health-0.16.12.tar.gz
.
File metadata
- Download URL: scikit_digital_health-0.16.12.tar.gz
- Upload date:
- Size: 13.0 MB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9e8083c33090102484311f305f0f9bcdcbf3e61d8e3be97d4d9c1e918104c21e |
|
MD5 | 3bd60fd7816124bb64e46c5f0469ebbf |
|
BLAKE2b-256 | 5d8fa88251dcd60a09c8e6ccf05565e1ed46ba61167b19eb31ffbae65fab9518 |
File details
Details for the file scikit_digital_health-0.16.12-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | fea19956096e4cb112739c496c17682f887514ae8eeb76d878a122ca0b69df2e |
|
MD5 | 51b49a5b746c610c9f71738c99c3c061 |
|
BLAKE2b-256 | 7835a79786511227148d24cda4a3357a5ab0fd9a7313e62e7c0162005f879aa2 |
File details
Details for the file scikit_digital_health-0.16.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 342de97797e25ceed2342fffaab53dea9514719627a425cef8df0925536fa518 |
|
MD5 | a992f7388d82333ce75fc0b0f23bbf7a |
|
BLAKE2b-256 | dc915b6b5734f015965b0277ae4715609f8f54baeb824f42845f279a84a186bb |
File details
Details for the file scikit_digital_health-0.16.12-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d79e6cdf46821eda87dfb29eb9529c9ac13ed96c9c627bf506a74620d1e7eded |
|
MD5 | 4b52f0d2c1c227846a7f05c2e2b37d6b |
|
BLAKE2b-256 | 89eb585abcb6b63c26ed1c01a3569a841cace2bab0ff63af30a6a60a539dd7af |
File details
Details for the file scikit_digital_health-0.16.12-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | f366a8007fd0c3ab154ba3854f4c7ad53e1f46daacdabd1afb6fb3718763d624 |
|
MD5 | 602feede21e8d010c540c1515ed4c1c6 |
|
BLAKE2b-256 | 494abb2196f4ac7efd85efce30ec6739ac9cb6cca071986a00e3b3078b9fc9f6 |
File details
Details for the file scikit_digital_health-0.16.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | ba79f696d271fc9bf1ad7c73299ec3026a318624817c5516ff6edfdbef8c08e5 |
|
MD5 | 1f9fe14ef1d5808321eaefba7b1ed3eb |
|
BLAKE2b-256 | 7774d2389889bf29cb7b71d9a71ca2aed2e66c3afe52b6e8682d440c711ac2ad |
File details
Details for the file scikit_digital_health-0.16.12-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 26c220e39da0da6a1e578130ec74d0e2cb048c87e58d18fa0b3d15c85f9710c0 |
|
MD5 | 32b83ad53a21efbd6c09efd9afd8392e |
|
BLAKE2b-256 | 132a273892ab2e997dcfc47113728b205032ca3fe9ec4e87209db99c1ebecfc9 |
File details
Details for the file scikit_digital_health-0.16.12-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a2aec82cb3895280cb3e1ef14ac18079d7acc1947bee060fb4d8b25e3d9f8128 |
|
MD5 | df6ac807d994c91365d6438fe1f9b9fa |
|
BLAKE2b-256 | 969ba717d776213537bf1ffb152612e085f6d93bb04c4d12d8a168a19bd845a9 |
File details
Details for the file scikit_digital_health-0.16.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53ee8c494e690b9195fd5550568eb6ccb82d59cfea902715d902629e96174dd1 |
|
MD5 | cd6304cdbf3370c187b4de31fafb1d96 |
|
BLAKE2b-256 | 1f34570bd30c90077c4ed32fba2fbe738ac3c2ad8c3425f2bbec07195e1dc7a2 |
File details
Details for the file scikit_digital_health-0.16.12-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c158f3a8c143611ea23690754820815344693c8a2f31931f9700dc2faf5c17dc |
|
MD5 | 0022573c6f885af13f061f63af09b06d |
|
BLAKE2b-256 | 9c277864a038190b7398e2b4e923e760549b66e3ad773887e97d3e3f2a64b213 |
File details
Details for the file scikit_digital_health-0.16.12-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 2.9 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3543c31c53de3a5250ed1a63541e9ae126d540acc5994fc8c55da9b799e08e2a |
|
MD5 | 57278f87950c9892f31588818c49ee3d |
|
BLAKE2b-256 | f445c590c8cabd34ace31a2e18f6bbd2e17292a2410d4b6b2e9603d8b6d6700c |
File details
Details for the file scikit_digital_health-0.16.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
- Upload date:
- Size: 2.4 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 33e8d826ede2a1253eaba7ced1941dfa8df84defb265d4ddfca30c24855d0704 |
|
MD5 | fc255bf50610e8d4e63323645df55398 |
|
BLAKE2b-256 | 968cba1a5389875e3fe70a6df68dc2af238b9ad097064e0e353c421f8e5b42a7 |
File details
Details for the file scikit_digital_health-0.16.12-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: scikit_digital_health-0.16.12-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 2.1 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.1.1 CPython/3.9.20
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 05464dfe483cdc196da38aed0e461a893e8196c36a2889e572864243a6c1d67f |
|
MD5 | 74fdeb3c598b7f3af72f46a211669a79 |
|
BLAKE2b-256 | 3309745a0fe8c0fc1ad7d3e18fee30171121356b3426b2e7cd8947f1407295e1 |