Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.16.13.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.16.13-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.16.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.16.13-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.16.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.16.13-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.16.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.16.13-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.16.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.16.13.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.tar.gz
Algorithm Hash digest
SHA256 16df389f258acd1c79e66c88292f964c8600dbbcbd20235cd22b451b045ff6c8
MD5 47614ade51b9bd42078ba1e309988726
BLAKE2b-256 aa15530291b98d8dad78764ca9ad17d9e16aea3d4f393aa543ef47c7731e2601

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3c18600517b7544f21ca7ba8973cc5c042702adb82f2450c4fb883774b409a2d
MD5 8cdc7b93dc2a3ca0fb4835ec68cd13fc
BLAKE2b-256 f38ba1a920a0cd17c53fe42094979c04c39dbcecd9bc14c95a5ac95edf720e3f

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f4bfe74289154148e7b256810ba8424456b11b349e9b1d4bd77a1aaea42d264
MD5 099faa01fbba0a43b44565b9894ba6ef
BLAKE2b-256 4aba5aaa668fe5489ccc4f182ee3dbc2db2305a06d3271d3ad497e2cfb921422

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c49638eea5f3692838555318bd195ae31101d752b3e59f2b1e2a77532c4d14c9
MD5 e412209536d330ea17bcbd609d2d4f19
BLAKE2b-256 7dd36d5320fad5b4cb4bcc26c923ea10c38de2f364a14227c6fb85de73fc7a87

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 e32fb4078cbb8fa4960e0447496a4283d7e607e8f617a81c7379a1c95fa525c5
MD5 0ab96a40d449b799ee016e0e50b0cd8f
BLAKE2b-256 1404af6c657a364ac2d57331e3cfd2624cfc117a219dc1e7bc8348366acb4834

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 71aed7571c5104efbbe9e12e4003b59492ee89cbfabcbeb2dd1e8b9bd4d10c36
MD5 048cb8fa56abfe2f511e0a82f4ab113a
BLAKE2b-256 1fa352945a143a088260521077e5c954b9f6424e2077b0e03adcb4a2e3a17a0a

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0bacb60e1e8b9dbdf4292a853ce4bc6dc22448ebbfdcf8f6be4c898974ff6a08
MD5 3531528002077c0d84f4fb90ca3d0ac0
BLAKE2b-256 bc65312658b25095d8e0a70da596cf9525d77365e161429bb3ab0f6ba19a48e4

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 2ced232c8abbcaf9fd441c7d3238b71f484683fb15fb3fdb2781e33573ef99e3
MD5 c3487a21896d28e0f59dc5b5de9284c5
BLAKE2b-256 8f84b87e99a0d116e1f65f12961915a00a8bf9136bef31dd1745d79ebce61cfc

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7dd71f16ccc4d2ebc50eb0b7836aeb9a8154146c9850314a7e0d20c557b6e103
MD5 b5767e5c5d5f81539a12a86c584fffc5
BLAKE2b-256 35baa0097675e3640a4224791d7e118d21e54ce451c867d2a66110d5e7229a5d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8dc2bac6edbecdd1b17fc51e98f891adf6f91c1b826a222c235cbc7885b1e456
MD5 38be7e1e5ca6ddfcbb53bb5fa71c0d8c
BLAKE2b-256 74dd55ed6a1801eb40cf890c9f4931125e9b9a34225ca5f220940ad04cf3157a

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 d27ef9bcc4c6342ff0e8c0a6917328573c4273edd2a200521b686fa51eef0a46
MD5 59f27bcf48c3ea7e5e445f399d532d94
BLAKE2b-256 68919ba80193ad8367760baf5ede45d4b6761e0338d27f670c225527f7f33023

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4040b02ebdf4584bb83ba5df31737d3df1f04d7a9f59ba6ad7d935d12e03c36
MD5 ba6e5b0a293eb46ac5ac7d6211c730b3
BLAKE2b-256 7c167ddd2e44aa4ca4cd80044b6dcd061bc474422a3d3f49399c63357e2bf8d6

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1ccc236b874fdb2839741fe230c5f7241717d85466962ad91861bb0dde519d8
MD5 c5d5ddfe86174f86234aa5880b404d59
BLAKE2b-256 df89e445d34641246d785c40dbd7d8656c4cdbf00465757bcebf78ea9ed92252

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page