Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.16.13.post1.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.16.13.post1-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.16.13.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13.post1-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.16.13.post1-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.16.13.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13.post1-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.16.13.post1-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.16.13.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13.post1-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.16.13.post1-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.16.13.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.13.post1-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.16.13.post1.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1.tar.gz
Algorithm Hash digest
SHA256 d21705c8ef0560023628511fa2c1d6ed7dd82e5618ba583ee7ebca9bd1fa9fee
MD5 4f0b5ed489413efe283988b4c16d79f3
BLAKE2b-256 1f58350237f865ec82129b78ebf661cc7e10921900c6d576425e79c89dbc0ac1

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 250af3b7350f09ed4028762d69cb63c165dbb5bed2adb893909a028f349b1b3e
MD5 da88d7bd4c3012f416ce17efafe2fa18
BLAKE2b-256 2ac746c929362de56b7b7fa1d8a3d3a75668b829323ff0af6e79e4c4c0f62a99

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 719fd2339ca26528eba6a74adeaf830f7d23f664c0ec150a6265a2d93c682c10
MD5 e05734b70b912a0712efa7c5398a6244
BLAKE2b-256 410343f38a916ba1b94fcc23334070a318451497ad7d382b1ab00ab2814c2163

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cb1096a4b1b31f075e286475ce30f6213fc94906519f2bfcf13d7628b1891dfd
MD5 9acf4d1fd2a29ec58242a27a9d141ee6
BLAKE2b-256 ae9f15b11e8a57ff331b89d5f84ae840702f581c9060973415a43f0fabaee264

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d6faec80531411070059c9dd98badc81ed7eabff2f052bd396f750f6abf8e918
MD5 08b92232f3778447670721f810728914
BLAKE2b-256 86fbb1b1d9e40416198184412ed446b7d5f7a99f90633ac61b568dc35327421d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 307c2b5271b1e1fbdb40beeae31d43ba26dcfe191b7693cb2c2c0ec1528f62f4
MD5 ffecc28fee8455f3f3ac053a2f403a75
BLAKE2b-256 017ce34b5bf8c86393df7e5370048beeee68efe56452f67cb4d098d371990e00

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 451e758e601d2527fb984bf057129dfac9c5880b771d3957bd1f46ef02a3d37d
MD5 4609e5609f7005c250a8fb7f42821fa9
BLAKE2b-256 8da7ccdec7a3cc5fee7b69058cdd0b8b188362088cc79c183de6dd402e0a76a7

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 59531038c79ca6555e600913614b0750fdec47a8ca3667b089155571e2cc6538
MD5 fa3a60a3102d9a5ae36eee1d05831338
BLAKE2b-256 9abc803420c245815c4fa4ccb4aea1b1cd162a64ba470c4433a3db95c49f01f5

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f241246c3c39811a2a3e8b06f2ba05944afbb0a6f0ffd2cd4d8a0c85f88323fc
MD5 604038cb1bd8d24e17696d9a75638934
BLAKE2b-256 f35d685489d530715f6420b8495b42847c9ed0f161f3e8d4b9d03a2794a70ef2

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1f64b679aec732560643aa7fc8c492420cb79f000289341d89dc2f2496344860
MD5 451ec6a61d5a30c3ecd7edbc7f746ac1
BLAKE2b-256 2e86c18fb891879534db8d98ce2f3f1d46619f96facc026d830ca9e6ae9ba22e

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 04f321508fdcf11230feb650a0075aa13376d9acac2def7447cbb5e269f370a1
MD5 063453f9448c89a4771a0eea990f3be4
BLAKE2b-256 581330adf3f0f2c50b026db82c84ef5edaf800e2e9a124e45555b4b988f16962

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d5005d3d1746b071e6854b117a20ba9dd61c1ca63d683369c30ba0e2f77b844c
MD5 78d05d476061684809b307054cbdbe00
BLAKE2b-256 6dac1ed314685b78f85b0d90de59b95f260523df43d2f7855d39ae32e680fe06

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.13.post1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.13.post1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ccb92003399785453e7392bbf645c304ac7628787102b16e5fb5f3999fc1eab4
MD5 6bb40d04313c52660eded4cadcfec019
BLAKE2b-256 9a7fc615beeba17f1ea762a5e5c6b8b419718d7d189a833d0b4ebf7b47e4ac84

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page