Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.16.14.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.16.14-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.16.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.14-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.16.14-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.16.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.14-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.16.14-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.16.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.14-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.16.14-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.16.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.14-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.16.14.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14.tar.gz
Algorithm Hash digest
SHA256 afc88e30923cd94b55bfdd91a9d0d29ae3c1661441e66ed76402e391afe16fc3
MD5 4f3106a836ba266becbdd72dd9123bb9
BLAKE2b-256 58d0ccaa7ef7c453a9eabf967220f8dfe9f58af2430328ae0c5cfa5e22897a7e

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 9fd0c739f1d91bf5b7d43fd5614f9ef64ff60c2b5c2362e533629ced88329e1a
MD5 341319c9adaf18c4b6ab8bb45283f607
BLAKE2b-256 60cc338c94c8e4db98ac11e0200f616ed36f4227695e6bfdce551b9feaedf7d6

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2c594c9311d9a8fe7d441fa2ca77152f05584de3b1a08c67c7ea024f3cced4d0
MD5 26e6feb48c72d2b54826e121c4cbe2ff
BLAKE2b-256 15edddce9ecdaae75feebababec67425381377a57a5df16b64a207fb7c17627c

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f5fc440bd8bc1822e7e56d61f8862852fcae90d0a00a577aad6f58e23c9a91e2
MD5 4acccd82cbf87e868f3d2a6fde5109cb
BLAKE2b-256 ba2742140ca182dfc48b0c1d7364126ee54f3d75d4d73696b7bd811dd95f9d72

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 5802041958819696e926709aeb511d6cfe20c1aeec30419106167669f628bdc1
MD5 8b7ee8dab03de2db3b77e6c03c25b381
BLAKE2b-256 3a5b7c342b8111bdf7a3c4b23fe7730a6b173e47608f90bd5dc059305dde0351

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 113b18aade5100feeb2ab33e22a9282c35862a1e9d041e5713a32e587ec82e21
MD5 46ddbd2345f630084b7d2cc02242579c
BLAKE2b-256 55d41a57d7b2478224e1a11cf692fb9bcd4c1b4d9316110575aeae52223f4439

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 52c4fd8f487c39fffd20d645b0fe768643df5de26aaa52f0066d350c94683364
MD5 ce5cb96ef80cd626705a3f8968d3997a
BLAKE2b-256 2d9b88637b2a0f05f488d8f35782e83706b97e6ee830c790f9027175f523b540

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 57087fce0121c5668b670c9dc9d922a23fceeab6a822673d9ed161dca8dd2625
MD5 6ff48e7071c92588e9976569b86b335f
BLAKE2b-256 e5ec5a992b73f3014deedeea0a0fc550a7a6cc5ce2f0cdb88557a38dc1e9d5bf

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 08b2c5fd8ddb0e9b88112a5815bd3a6261849763e4464a5792b2609c429023cd
MD5 e8fd808790313defd696abd5cd45f909
BLAKE2b-256 f49d788a374d3942346a41ae33cd80b80b72e8f7c4e1ba9abb4996a350bd491e

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bb83fad17f0791c881d441123470e6b9796491ac372e287f3970bbee56160996
MD5 db5d821732ae420f9d9f95b05d5c0c85
BLAKE2b-256 b6ab72984ce780b4b7b2e6a2823007d8ebedfb5d7309adedfa98448c6e25c086

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7210d40d3ebf7766d3a5d3bcd72198e3d57d64c6394274596004b0e949526d2b
MD5 91a82e9de4d37a5ce0393a5f60237bb3
BLAKE2b-256 058422ce54005d36e44641c88b3996cec7a09e0b5f6bd60e188b5396a7a7957e

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d3a1f32ccdcd64800935d571e079ab1e41e1129812da27ab228e4ce00ee0c7a
MD5 5faf3a3c4f0e48eff67f6474919dcc19
BLAKE2b-256 e14d74a4b00d4c51ac83c730c1958ab06205e0558df44f50e319b470b774cf10

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.14-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.14-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 65a9a2c88b784f4f2bc906c4c9da3b606f31fcb05c0421b5d96e87752122fa0b
MD5 e551f65ade5189a0d70847ae2307c989
BLAKE2b-256 80e552707827cea84c3bdf3a48bbb2f543e401064cf2ca9a6257acfbaa4d9cc7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page