Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.16.15.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.16.15-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.16.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.15-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.16.15-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.16.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.15-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.16.15-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.16.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.15-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.16.15-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.16.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.16.15-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.16.15.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15.tar.gz
Algorithm Hash digest
SHA256 35f7b398b864335fab5a66f71abc477ddd475b2e9be00ad8e77e502c0c3a5052
MD5 2cb2eabbf0cb5be36428a04f865ac69e
BLAKE2b-256 d4fe4aa9b4cf11c661adb97f657eafb99edab8cac60dad8320e453ebe772eaa6

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a5552c2e3ad98898687d0abc2a2e6ba45519922d8231767ebfa84b83a10369da
MD5 b93c1dff308eb7e683e0561ab1ea3f08
BLAKE2b-256 4fa67dfd6b18ebecd8a0e18a7a95d67b441208b91c9efe15e95e05bfb733e657

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c09c8ae289ce66df5cb79cf8d481c3797404b9807b2cc720498528b6744c894d
MD5 3a2d21cfdfd2d90f024d550cde2ab290
BLAKE2b-256 18406ee8f586fc33deb8fb70ca3ff8842705b9ee8059483445d0c5ec53d6bce6

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 148b00f5c5c9253f060eb37e73b2987a2c24a496908f253d33a3b8aec51829a7
MD5 f0f5081a95f3109619240d88be1ed072
BLAKE2b-256 c973d2cd562093451fa2e69b949383e00c3def29a2c8fd6e296dc716c34df7c4

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 bd7ee376ec46e07dcdbc3b827e1085446fd80fadbc5b0487607fd4e4723efa45
MD5 bd4604a59562559649445d180dddbcfd
BLAKE2b-256 a18b72fc9131c776996a78cb06bb2d40cee787345d54fe926d675193a731911d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96125471a0ac743dc248963979ec8a2c61987c533fe544d3563285909c7e904c
MD5 dccef95304a2b7862cf83659149f83c7
BLAKE2b-256 092e8eb63665759d3959c56620bf33a8a036c060922e76f7a0391f12d9d605ef

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 94bb37a5ebe9e4f23ac0d6c8a3d9a9546e1bed19ed6921058f1ba9ae7fc06372
MD5 5d29ac2134c5f2af71dee1e2f3480fe8
BLAKE2b-256 353f4f9027174d6df0435c9c2d50664ed432753ee855c028d2f413eb5764a67c

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 17b9d5ce68fd1b667f0e4259e5e6765745c09e31d30b88807895bc76ae93425b
MD5 3440ed14ee94b8fd339c57cb318c347c
BLAKE2b-256 499198140d127e6fdf31901c425d51494df1b2a9bcd4c475f6ef253d352e12e6

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 13f05e091f5c5b162ecd6f69b1dd9eadb118e382df074b7bacac134a5ca33ab1
MD5 20b022d504a39e83f8e91261604ee183
BLAKE2b-256 dad1681dcf8cbf35d08f3863d1e2198a2003cdbcd914bf4f75bed4c538eee9de

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 88ee3449d322c2c9253b8703dca3369e67f388fe0d9990de01014eea57eeefad
MD5 54882c35c1654b8d6de43eb88c00d886
BLAKE2b-256 8e24e0909d78a69e1eaa9ff8efa31e44edbf90894b1b630adc7540a457902436

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea3195dcafafb193ac5a18f50ec6c03ad1c4826f579ca511df8927e2e76e4931
MD5 109a3e2af6d1e682752d64ff24610103
BLAKE2b-256 fa00c22430cafb4ff5ec55084dd582eb4679ff37ea8b58b293d19900d0d28244

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd859d4427a35a012524a56850baac35b75eaeb9411219875ecaea2b537cd1ce
MD5 b16864324909210deefcd951cbf62e42
BLAKE2b-256 ea7620348dc4ac6f8bd22eb82ad835737f177045e062cbfc6abb1de4b3acdfce

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.16.15-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.16.15-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 739cbd1dbd80e530a91354f1cd3b43f9d3dfc2ab8c076d25f0cb87793309e94d
MD5 77bcf677c2692e166860178e703967c4
BLAKE2b-256 d616ce701e3647bf7ee7460435593509744b1c95158d3da5b892068d82a5e9b5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page