Skip to main content

Python general purpose human motion inertial data processing package.

Project description

skdh_badge

Scikit Digital Health (SKDH) is a Python package with methods for ingesting and analyzing wearable inertial sensor data.

SKDH provides the following:

  • Methods for ingesting data from binary file formats (ie Axivity, GeneActiv)
  • Preprocessing of accelerometer data
  • Common time-series signal features
  • Common time-series/inertial data analysis functions
  • Inertial data analysis algorithms (ie gait, sit-to-stand, sleep, activity)

Availability

SKDH is available on both conda-forge and PyPI.

conda install scikit-digital-health -c conda-forge

or

pip install scikit-digital-health

[!WARNING] Windows pre-built wheels are provided as-is, with limited/no testing on changes made to compile extensions for Windows.

[!NOTE] Windows users may need to install an additional requirement: Microsoft Visual C++ redistributable >14.0. The 2015 version can be found here: https://www.microsoft.com/en-us/download/details.aspx?id=53587

Build Requirements

As of 0.9.15, Scikit Digital Health is built using Meson.

Citation

If you use SKDH in your research, please include the following citation:

[1] L. Adamowicz, Y. Christakis, M. D. Czech, and T. Adamusiak, “SciKit Digital Health: Python Package for Streamlined Wearable Inertial Sensor Data Processing,” JMIR mHealth and uHealth, vol. 10, no. 4, p. e36762, Apr. 2022, doi: 10.2196/36762.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_digital_health-0.17.0.tar.gz (13.0 MB view details)

Uploaded Source

Built Distributions

scikit_digital_health-0.17.0-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_digital_health-0.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.0-cp312-cp312-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_digital_health-0.17.0-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_digital_health-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.0-cp311-cp311-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_digital_health-0.17.0-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_digital_health-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.0-cp310-cp310-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_digital_health-0.17.0-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_digital_health-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_digital_health-0.17.0-cp39-cp39-macosx_11_0_arm64.whl (2.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file scikit_digital_health-0.17.0.tar.gz.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0.tar.gz
Algorithm Hash digest
SHA256 0378c183c4927eab1b3c63b2748220923a0c249cc0fe2a7b89324ac1adfbc30d
MD5 5aed0d867dd021c4a14ef9877c35a525
BLAKE2b-256 73d13cdf1972210d08b7cc211a3cd8f8cf79393a734f4d859b871af662df31dd

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 2d0b3bad30a6893cc8b390e962bce8c9ca2c8439e58a440dce2037bc3d27d743
MD5 c6d63b9a01fb5f6d567a7a83e945d9b5
BLAKE2b-256 2ff9b28045d0bd6d8017d9fdfec29a835c403d12238f8c2d7bc85e69db8d3b8c

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afb76e6303786868e3c8cf41878b3f86e1e500e44072155a06de5db75764486f
MD5 d8f329a39a4a7f8219b6c337a5144998
BLAKE2b-256 d300455404bc42d1948413bdffac387f5b232d7284ef57dff13dcba8c947814f

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 513e2c1cf3abf687a8c5f1a54a4c174ea7a8c301d5a8550bd868cb9c473efd3f
MD5 c63c24cbf7a5c8d2bf1651634c413d8c
BLAKE2b-256 c3846d6bd2266f8bbf4bd0d87e12c30ce16c2662d573a2cd0f89225e10658081

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ab101f9fa8bac2d4857dc68861ae635584f443dffad2f5a0d92ab982d70fa39d
MD5 ee97016c0237cc0f69fc097b33a9e017
BLAKE2b-256 37be3c309075a9d20068fcf87fc90d31f1da0557023071e0c04056f9f5d19499

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e46412fc0e8d9660b146b6aa87d546e87d232b23d694718dbfeadf7dccd7c0b5
MD5 8277c6d05256deceef3c31442d5c5f29
BLAKE2b-256 f7bc69956ece7bf8b6db093934e23eae0df839e025e87bc980688358ed87a4a1

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e0e7df38d089725a2fd932276d41c27dc7bef6f0b283e54ed85e3ae205282101
MD5 197a860dab5c3cac0b5c6444c1697258
BLAKE2b-256 160c9341f4d835a18e8c301b4c6b1029edf34e0ac6a3f3376b802819dd416831

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a9c4e5448958d40f2e6eebf2cc7f556e6250cb0141da55a9602604a0dadad912
MD5 a95e1537efea14f2d417577dd6e2f24f
BLAKE2b-256 02e73910b89d2ef3029f2b591d27c1dddeb868c0b882e96a3f0625fb55568c3d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 366c8ab25700551c59516e9fa46695df67df550d477e052649e993736381d233
MD5 52c9bf1240c0f7111fe92b7dd74213be
BLAKE2b-256 e485653e5adcad591e259017dbe80a4f42e84da6ce4e98f97592838b0a68a7c9

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 233dcc565c492dee7ba0916a840eab1db2f8950a1c41df6c5387285c1017d88a
MD5 f27479cba8cf1b91ed85c2f42695d739
BLAKE2b-256 6d26d575c0a544e513fbed2141c8220ad78f9856a784641ceefbcfcef569c23d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ae3223238fccd775a9d644a0709d76dd90efbe87a8e2011d5f54824719b8c5a8
MD5 f7c20d152625e5b5432f5dee6e01f7ee
BLAKE2b-256 e5351e8e50bd74d138fd48198d38c660d3885b22388e7074f814d49400384c51

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 263ed5eb4b0b5c5f36ca96e9ecc0201c5e20f2fc57a70ec6bed84c30087d7f64
MD5 c953b96aa58fd88abfe845b3f8edf2c7
BLAKE2b-256 ce9de5bb62e98e055c0ad559f40f9b494b25f5ba7b564f0b568ff637a8fcf50d

See more details on using hashes here.

File details

Details for the file scikit_digital_health-0.17.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_digital_health-0.17.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23e5b404c2cf91729a0c5e12f73972407ed908db1b4783cbb6c814a135f7e192
MD5 12920a7d53fd8ca95b3b70a85ef559a7
BLAKE2b-256 8e451eda6e67764a8b4e157f9b127d6debaa13bbf8f8dd5ca144b1d4978e3fdf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page