An extension module implementing the fast marching method
Project description
scikit-fmm is a Python extension module which implements the fast marching method.
Signed distance functions
Travel time transforms (solutions to the Eikonal equation)
Extension velocities
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
scikit-fmm-2021.9.23.tar.gz
(422.4 kB
view details)
Built Distributions
File details
Details for the file scikit-fmm-2021.9.23.tar.gz
.
File metadata
- Download URL: scikit-fmm-2021.9.23.tar.gz
- Upload date:
- Size: 422.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
94808e6d747143cc9d50aa946cf5b1e61dbd4d8bc6229a7a5f57db6cedf38a47
|
|
MD5 |
a2efbf1953898060b201029e56e017db
|
|
BLAKE2b-256 |
c50225c7db4dd5d87adbfd9c77d1b85304607c093ce4cfefdc991f519ef9959e
|
File details
Details for the file scikit_fmm-2021.9.23-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: scikit_fmm-2021.9.23-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 49.7 kB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
fd1a3ad119b9c53dc8a53320c0172c3448321edb2f38b0befe26505e71a565a3
|
|
MD5 |
6266cefac3f8bf66bdb2e7e99e5e60cb
|
|
BLAKE2b-256 |
d948d104e0440886a1943ce51be1aa348ccb44c23e5460cea6c69a40509157e3
|
File details
Details for the file scikit_fmm-2021.9.23-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: scikit_fmm-2021.9.23-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 49.4 kB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
03d65eec281c10bc478dbda1142eadaa3d97ad2b7d721f632a085aa4be868e2b
|
|
MD5 |
a042bd3cd1044c376a912ed8cc93a50f
|
|
BLAKE2b-256 |
2756282b6fac07aabc6cccb1de3b731533feca1d72b41a47561d7d8eafc354e8
|
File details
Details for the file scikit_fmm-2021.9.23-cp36-cp36m-win_amd64.whl
.
File metadata
- Download URL: scikit_fmm-2021.9.23-cp36-cp36m-win_amd64.whl
- Upload date:
- Size: 49.4 kB
- Tags: CPython 3.6m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
23f9664e032521a3398b97eb900a2599ff28ebaaf8b0a68fae214a57ad50d7ef
|
|
MD5 |
a986738bba4d9ca7aecb50686caf3e7b
|
|
BLAKE2b-256 |
87ac1a09e4e89b3d5c3358bec5e1de4c9bb519ecd7523b961a2981749f28ea66
|