Skip to main content

An extension module implementing the fast marching method

Project description

scikit-fmm is a Python extension module which implements the fast marching method.

  • Signed distance functions

  • Travel time transforms (solutions to the Eikonal equation)

  • Extension velocities

https://github.com/scikit-fmm/scikit-fmm

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-fmm-2021.9.23.tar.gz (422.4 kB view details)

Uploaded Source

Built Distributions

scikit_fmm-2021.9.23-cp38-cp38-win_amd64.whl (49.7 kB view details)

Uploaded CPython 3.8Windows x86-64

scikit_fmm-2021.9.23-cp37-cp37m-win_amd64.whl (49.4 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_fmm-2021.9.23-cp36-cp36m-win_amd64.whl (49.4 kB view details)

Uploaded CPython 3.6mWindows x86-64

File details

Details for the file scikit-fmm-2021.9.23.tar.gz.

File metadata

  • Download URL: scikit-fmm-2021.9.23.tar.gz
  • Upload date:
  • Size: 422.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3

File hashes

Hashes for scikit-fmm-2021.9.23.tar.gz
Algorithm Hash digest
SHA256 94808e6d747143cc9d50aa946cf5b1e61dbd4d8bc6229a7a5f57db6cedf38a47
MD5 a2efbf1953898060b201029e56e017db
BLAKE2b-256 c50225c7db4dd5d87adbfd9c77d1b85304607c093ce4cfefdc991f519ef9959e

See more details on using hashes here.

File details

Details for the file scikit_fmm-2021.9.23-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scikit_fmm-2021.9.23-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 49.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3

File hashes

Hashes for scikit_fmm-2021.9.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 fd1a3ad119b9c53dc8a53320c0172c3448321edb2f38b0befe26505e71a565a3
MD5 6266cefac3f8bf66bdb2e7e99e5e60cb
BLAKE2b-256 d948d104e0440886a1943ce51be1aa348ccb44c23e5460cea6c69a40509157e3

See more details on using hashes here.

File details

Details for the file scikit_fmm-2021.9.23-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: scikit_fmm-2021.9.23-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 49.4 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3

File hashes

Hashes for scikit_fmm-2021.9.23-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 03d65eec281c10bc478dbda1142eadaa3d97ad2b7d721f632a085aa4be868e2b
MD5 a042bd3cd1044c376a912ed8cc93a50f
BLAKE2b-256 2756282b6fac07aabc6cccb1de3b731533feca1d72b41a47561d7d8eafc354e8

See more details on using hashes here.

File details

Details for the file scikit_fmm-2021.9.23-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: scikit_fmm-2021.9.23-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 49.4 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.5.0.1 requests/2.24.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.8.3

File hashes

Hashes for scikit_fmm-2021.9.23-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 23f9664e032521a3398b97eb900a2599ff28ebaaf8b0a68fae214a57ad50d7ef
MD5 a986738bba4d9ca7aecb50686caf3e7b
BLAKE2b-256 87ac1a09e4e89b3d5c3358bec5e1de4c9bb519ecd7523b961a2981749f28ea66

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page