Skip to main content

Variations on goodness of fit tests for SciPy.

Project description

Provides variants of Kolmogorov-Smirnov, Cramer-von Mises and Anderson-Darling goodness of fit tests for fully specified continuous distributions.

Example

>>> from scipy.stats import norm, uniform
>>> from skgof import ks_test, cvm_test, ad_test

>>> ks_test((1, 2, 3), uniform(0, 4))
GofResult(statistic=0.25, pvalue=0.97...)

>>> cvm_test((1, 2, 3), uniform(0, 4))
GofResult(statistic=0.04..., pvalue=0.95...)

>>> data = norm(0, 1).rvs(random_state=1, size=100)
>>> ad_test(data, norm(0, 1))
GofResult(statistic=0.75..., pvalue=0.51...)
>>> ad_test(data, norm(.3, 1))
GofResult(statistic=3.52..., pvalue=0.01...)

Simple tests

Scikit-gof currently only offers three nonparametric tests that let you compare a sample with a reference probability distribution. These are:

ks_test()

Kolmogorov-Smirnov supremum statistic; almost the same as scipy.stats.kstest() with alternative='two-sided' but with (hopefully) somewhat more precise p-value calculation;

cvm_test()

Cramer-von Mises L2 statistic, with a rather crude estimation of the statistic distribution (but seemingly the best available);

ad_test()

Anderson-Darling statistic with a fair approximation of its distribution; unlike the composite scipy.stats.anderson() this one needs a fully specified hypothesized distribution.

Simple test functions use a common interface, taking as the first argument the data (sample) to be compared and as the second argument a frozen scipy.stats distribution. They return a named tuple with two fields: statistic and pvalue.

For a simple example consider the hypothesis that the sample (.4, .1, .7) comes from the uniform distribution on [0, 1]:

if ks_test((.4, .1, .7), unif(0, 1)).pvalue < .05:
    print("Hypothesis rejected with 5% significance.")

If your samples are very large and you have them sorted ahead of time, pass assume_sorted=True to save some time that would be wasted resorting.

Extending

Simple tests are composed of two phases: calculating the test statistic and determining how likely is the resulting value (under the hypothesis). New tests may be defined by providing a new statistic calculation routine or an alternative distribution for a statistic.

Functions calculating statistics are given evaluations of the reference cumulative distribution function on sorted data and are expected to return a single number. For a simple test, if the sample indeed comes from the hypothesized (continuous) distribution, the values passed to the function should be uniformly distributed over [0, 1].

Here is a simplistic example of how a statistic function might look like:

def ex_stat(data):
    return abs(data.sum() - data.size / 2)

Statistic functions for the provided tests, ks_stat(), cvm_stat(), and ad_stat(), can be imported from skgof.ecdfgof.

Statistic distributions should derive from rv_continuous and implement at least one of the abstract _cdf() or _pdf() methods (you might also consider directly coding _sf() for increased precision of results close to 1). For example:

from numpy import sqrt
from scipy.stats import norm, rv_continuous

class ex_unif_gen(rv_continuous):
    def _cdf(self, statistic, samples):
        return 1 - 2 * norm.cdf(-statistic, scale=sqrt(samples / 12))

ex_unif = ex_unif_gen(a=0, name='ex-unif', shapes='samples')

The provided distributions live in separate modules, respectively ksdist, cvmdist, and addist.

Once you have a statistic calculation function and a statistic distribution the two parts can be combined using simple_test:

from functools import partial
from skgof.ecdfgof import simple_test

ex_test = partial(simple_test, stat=ex_stat, pdist=ex_unif)

Exercise: The example test has a fundamental flaw. Can you point it out?

Installation

pip install scikit-gof

Requires recent versions of Python (> 3), NumPy (>= 1.10) and SciPy.

Please fix or point out any errors, inaccuracies or typos you notice.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-gof-0.1.3.tar.gz (10.3 kB view details)

Uploaded Source

File details

Details for the file scikit-gof-0.1.3.tar.gz.

File metadata

  • Download URL: scikit-gof-0.1.3.tar.gz
  • Upload date:
  • Size: 10.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for scikit-gof-0.1.3.tar.gz
Algorithm Hash digest
SHA256 092e3bcbc8736dd19793cf3bbaa9a1b1e0f8a4fd0a2f0f90351d12e37b54779e
MD5 af83ddafcfc81a41cbccb5bf49761b9c
BLAKE2b-256 e0092c2a5af0fe9901bed91ca862fe4d678099b41c34db0efd6036925c93ad9a

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page