Skip to main content

LABS: Linear-time Adaptive Best-subset Selection

Project description

pypi pyversion downloads issues license

Overview

Best-subset selection plays a vital role in regression analysis, aiming to identify a parsimonious subset of variables that maximizes prediction accuracy within the resulting linear model. This process is important in various scientific fields, including physics, biology, and medicine, where extensive datasets are routinely generated. Nevertheless, the computational complexity of selecting the best subset from massive datasets presents a formidable challenge, given the problem’s well-known NP-hard nature.

To address this challenge, we introduce a new tuning-free iterative algorithm scikit-labs that capitalizes on a novel subset splicing procedure. Remarkably, under mild conditions, our algorithm demonstrates provable identification of the best subset while maintaining a linear time complexity, achieving optimality in computation and statistics simultaneously. The power of scikit-labs is numerically certified by extensive test cases.

Quick Start

Installation

Install the stable scikit-labs Python package from Pypi:

pip install scikit-labs

And then the package can be imported as:

import sklabs

Example

Best subset selection for linear regression on a simulated dataset in Python:

from sklabs.datasets import make_glm_data
from sklabs.linear import LinearRegression
sim_dat = make_glm_data(n = 350, p = 500, k = 6, family = "gaussian")
model = LinearRegression()
model.fit(sim_dat.x, sim_dat.y)

Open source software

scikit-labs is a free software and its source code are publicly available in Github. The core framework is programmed in C++, and user-friendly Python interfaces are offered. You can redistribute it and/or modify it under the terms of the GPL-v3 License. We welcome contributions for scikit-labs, especially stretching scikit-labs to the other best subset selection problems.

Citation

If you use scikit-labs or reference our tutorials in a presentation or publication, we would appreciate citations of our library.

@article{scikit-labs,
    title   = {Selecting the Best Subset in Regression in Linear Time},
    author  = {Jin Zhu and Junxian Zhu and Junhao Huang and Xueqin Wang and Heping Zhang},
    journal = {Submitted},
    year    = {2023},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-labs-0.0.1rc2.tar.gz (1.5 MB view details)

Uploaded Source

Built Distributions

scikit_labs-0.0.1rc2-cp310-cp310-win_amd64.whl (453.2 kB view details)

Uploaded CPython 3.10Windows x86-64

scikit_labs-0.0.1rc2-cp310-cp310-win32.whl (427.1 kB view details)

Uploaded CPython 3.10Windows x86

scikit_labs-0.0.1rc2-cp310-cp310-musllinux_1_1_x86_64.whl (944.3 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ x86-64

scikit_labs-0.0.1rc2-cp310-cp310-musllinux_1_1_i686.whl (996.0 kB view details)

Uploaded CPython 3.10musllinux: musl 1.1+ i686

scikit_labs-0.0.1rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (401.7 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scikit_labs-0.0.1rc2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (401.9 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

scikit_labs-0.0.1rc2-cp310-cp310-macosx_11_0_arm64.whl (337.7 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

scikit_labs-0.0.1rc2-cp310-cp310-macosx_10_9_x86_64.whl (366.4 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

scikit_labs-0.0.1rc2-cp310-cp310-macosx_10_9_universal2.whl (669.9 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

scikit_labs-0.0.1rc2-cp39-cp39-win_amd64.whl (453.2 kB view details)

Uploaded CPython 3.9Windows x86-64

scikit_labs-0.0.1rc2-cp39-cp39-win32.whl (427.3 kB view details)

Uploaded CPython 3.9Windows x86

scikit_labs-0.0.1rc2-cp39-cp39-musllinux_1_1_x86_64.whl (944.5 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ x86-64

scikit_labs-0.0.1rc2-cp39-cp39-musllinux_1_1_i686.whl (996.2 kB view details)

Uploaded CPython 3.9musllinux: musl 1.1+ i686

scikit_labs-0.0.1rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (401.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scikit_labs-0.0.1rc2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (402.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

scikit_labs-0.0.1rc2-cp39-cp39-macosx_11_0_arm64.whl (337.8 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

scikit_labs-0.0.1rc2-cp39-cp39-macosx_10_9_x86_64.whl (366.5 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

scikit_labs-0.0.1rc2-cp39-cp39-macosx_10_9_universal2.whl (670.1 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

scikit_labs-0.0.1rc2-cp38-cp38-win_amd64.whl (453.1 kB view details)

Uploaded CPython 3.8Windows x86-64

scikit_labs-0.0.1rc2-cp38-cp38-win32.whl (427.1 kB view details)

Uploaded CPython 3.8Windows x86

scikit_labs-0.0.1rc2-cp38-cp38-musllinux_1_1_x86_64.whl (944.3 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ x86-64

scikit_labs-0.0.1rc2-cp38-cp38-musllinux_1_1_i686.whl (996.0 kB view details)

Uploaded CPython 3.8musllinux: musl 1.1+ i686

scikit_labs-0.0.1rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (401.7 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

scikit_labs-0.0.1rc2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (401.8 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

scikit_labs-0.0.1rc2-cp38-cp38-macosx_11_0_arm64.whl (337.7 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

scikit_labs-0.0.1rc2-cp38-cp38-macosx_10_9_x86_64.whl (366.3 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

scikit_labs-0.0.1rc2-cp38-cp38-macosx_10_9_universal2.whl (669.8 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

scikit_labs-0.0.1rc2-cp37-cp37m-win_amd64.whl (453.6 kB view details)

Uploaded CPython 3.7mWindows x86-64

scikit_labs-0.0.1rc2-cp37-cp37m-win32.whl (427.6 kB view details)

Uploaded CPython 3.7mWindows x86

scikit_labs-0.0.1rc2-cp37-cp37m-musllinux_1_1_x86_64.whl (944.3 kB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ x86-64

scikit_labs-0.0.1rc2-cp37-cp37m-musllinux_1_1_i686.whl (996.1 kB view details)

Uploaded CPython 3.7mmusllinux: musl 1.1+ i686

scikit_labs-0.0.1rc2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (402.3 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

scikit_labs-0.0.1rc2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (402.0 kB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686

scikit_labs-0.0.1rc2-cp37-cp37m-macosx_10_9_x86_64.whl (366.5 kB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

scikit_labs-0.0.1rc2-cp36-cp36m-win_amd64.whl (453.6 kB view details)

Uploaded CPython 3.6mWindows x86-64

scikit_labs-0.0.1rc2-cp36-cp36m-win32.whl (427.6 kB view details)

Uploaded CPython 3.6mWindows x86

scikit_labs-0.0.1rc2-cp36-cp36m-musllinux_1_1_x86_64.whl (944.3 kB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ x86-64

scikit_labs-0.0.1rc2-cp36-cp36m-musllinux_1_1_i686.whl (996.1 kB view details)

Uploaded CPython 3.6mmusllinux: musl 1.1+ i686

scikit_labs-0.0.1rc2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (402.2 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

scikit_labs-0.0.1rc2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (402.0 kB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686

scikit_labs-0.0.1rc2-cp36-cp36m-macosx_10_9_x86_64.whl (366.5 kB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file scikit-labs-0.0.1rc2.tar.gz.

File metadata

  • Download URL: scikit-labs-0.0.1rc2.tar.gz
  • Upload date:
  • Size: 1.5 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scikit-labs-0.0.1rc2.tar.gz
Algorithm Hash digest
SHA256 7ae2b505961fd204947b437fee5dfc9c8fda85ae2d468f2b87d4def0ebffe743
MD5 19c0c35a43a4b7bd97895093b322d6f5
BLAKE2b-256 4cb7c54793adbff4c08cb4ad01bd8d2485da07029fce926fa980e015384f676e

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 1206a81b11bb28c9da86f787e357cc6169493a0fd31d869528e3d884ec350905
MD5 febd3f6ddf8332305a3e66932bec306a
BLAKE2b-256 448741dca16ada65a663d4d4f63e21efb56af4038e3f75fa566d613d9134e129

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-win32.whl.

File metadata

  • Download URL: scikit_labs-0.0.1rc2-cp310-cp310-win32.whl
  • Upload date:
  • Size: 427.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 6c1aad881d394e08ddcca7d56c50e06e404c27a9b95b8c6f678556836ccbf9da
MD5 c645f4b74eeebb371b995fa44bdbd0ab
BLAKE2b-256 041b0162b1036498cccb7e2b8c7fc05d502137e68e2ee00f519a05aa14ef0446

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 22728d2a800bb78a3ce70dccdd91bbd07da0a06d1f43d80e8a15ce3dadfd5b94
MD5 fb483547833ac161464860fa7b0139c0
BLAKE2b-256 d4a7c8b8c60f29815645d9b084a5c454c6b42f77d01266d436de69dafe331165

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 e1bf7f887247fb8e1bfa70f722604f905a56007d59537207995928567a25b580
MD5 10f6e441d2f8d0e488a5382586225da2
BLAKE2b-256 d6aa6ad93d19ba1a39c6e5e6177cabceb59636fd4834c86d5708bdfd0c9bed58

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd1f4144c4a74d9ddcb52babdf83cc0a1efea49b2cb4fbcf20495921b3ce96c1
MD5 c873e61630e5316e3dd0e3badc0ca548
BLAKE2b-256 8f7a8343aee4f9119515dc9d1f78d2b5f50b4b98828e699ed694cf8399c16e13

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b65c0458be05e1d247a44c989eaf0647d6964f1e03f6faae343b2312b1656ee8
MD5 80aef6a5d0b427c8f2f8029f167ffb03
BLAKE2b-256 2c8b740902291d57e129173ef7e9ce49c81809cb54ceeebd9fd3e854b8a3efe3

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 609a29dcff9eeffca0efee4d2f7a1910bf18977467cb35bad7c2e871d6169e1a
MD5 cd3092cb17d4afb29d0a6d8b37e8717d
BLAKE2b-256 1d08ea732e60ab146e1846de95c2d1d6e6274cd3cf0c7c41473e33baef9afd31

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 137aa7d04d152046194d162f91188b9b8f230622c2f07d63c86ced82998f7041
MD5 ec7404b53faa96d1d7c587b7e697d535
BLAKE2b-256 b77796210b24250b059c7aa1578ceab9f2a480daac5b6a78c5aa4a6e8535f7fe

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9d1ccf21c5caf569714bf72dca6a5ce7d0fefc3eeb119d80472d1d8d7c78796b
MD5 3782f1f86e65676bf2ed3992a17263f2
BLAKE2b-256 e0995e045ce1cd8b6b85d7955ac940182d0623c1d013e749f3eda305ba1fde40

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c1132abf91b3e7c47550a0674a8746671bce4b1fdf76c8da6f398776fc0a89dd
MD5 55961bf7c5accbc8e8b599d5d018b60a
BLAKE2b-256 84b6c343936dad75dff6c2f9844112f0a3cfb077c786b82319913651377373fe

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-win32.whl.

File metadata

  • Download URL: scikit_labs-0.0.1rc2-cp39-cp39-win32.whl
  • Upload date:
  • Size: 427.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 f507078e114ead893f7f276d478d6f9145a3a57b37f327754d557d7ca3f842bb
MD5 0befead8ba24c06c52d0f89918b0a48f
BLAKE2b-256 30f15a433c67a173581cb0e83630a5fa4c37ee873d55e5b83510ce6c0d4810e4

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 104b0cfbc5556b80a0a41d77a4322b0e21fd52440eb9d4049f24da05c697ae44
MD5 49a5ce37b285ef12ca5df2d67f9894ca
BLAKE2b-256 b8964d0d472d940b714617afb852635de24655db8ea9d941fa230e4da2d4bd45

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 67de13084a10352cbf583afac6413c65a2136952e2445a2c4929d755df440752
MD5 ff59c5068779dff6c6efc01dcdf9e268
BLAKE2b-256 6147d84435e03c29c36e908e27d1783ced0b6c85da42dadb4a71b1fabe2b30c2

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55a4f0764143660b0ce26b03c294a3bf51cc62c9a29ca29e84cc3a24a0ad98ac
MD5 1eb55137003e1ff810beec84851e42ee
BLAKE2b-256 8b5f1f49324f6eed6c7d20ec8a454e85e204b5edda7117e2eb577d1a0db93c71

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 582f889125d261d784352c596ca1f1b7b2b5e4dc3e1cb017401d4f21ceaea93c
MD5 4172247cd47496e46ec86258dfe2e84a
BLAKE2b-256 66678f388248cb583e16fc710529a1a4242f11668376d785f58008ea944c7f1f

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8206d5d69c2bfd2913d0bdb2347298706ba2b57e2ac33496fbdc1985102f287b
MD5 7b7dd43865d5234915ba88cc41cbf798
BLAKE2b-256 8f5ceb8cbab403ff9ef4aa0a1f11d922b1b73105b4bf015319125e86db263e8c

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8c850b24e75f93f03f829aa0ea1e9764744356dfec1ebba4a0ba857189973057
MD5 cc5f1db76e05872ef6d4ac619e388dec
BLAKE2b-256 72362eb601f1874316e2019831e28ba14c8eedca6dee655c86f8cd4753ae4e6d

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 17815a45ca14b8d692fe0c8dccb48681fc11437744d8e3cd2908ad88d3d8c0a5
MD5 487857d8d68c31086a246787199115b4
BLAKE2b-256 d72ecee01e5c8551b9d0761ffb333580e9ce35cf39946b2e01ab000677b229bd

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 def5bf308592a1f9a462eb5e353691bedb3bb6fb409e5a270e82689c4ef728b2
MD5 aa392172a42d47a93503a6b7c85dc9db
BLAKE2b-256 9c9898c56ecf73fb21c3591d1431fc24c1fefc129a15bd0216b2517f1b8ff091

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-win32.whl.

File metadata

  • Download URL: scikit_labs-0.0.1rc2-cp38-cp38-win32.whl
  • Upload date:
  • Size: 427.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 cd89ea2803f55df8660e5b475819360788aa53b62afcebd4100e13b9cefc1680
MD5 c1121325b3373fae0ee58f4f3f905a92
BLAKE2b-256 bd2ee8521847bddaa8076d94c520b3b697c1752a84c8213165c1b6c69d8d2e84

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 ae8e35e9856a145da0329144d49abc438a3051710c652334130d0539987e2126
MD5 00747768725762fff77316833593b1cd
BLAKE2b-256 56865d20ed3a6819ab2120510cd45e4d62ad79fb9dddc54d8984ab97fdce153b

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 30a34ea1010e14b562d7b9ba1e9c95fbaf796f277a0bd87eda99b5836034effd
MD5 243bbaf5fab583719d9e17254ab59b20
BLAKE2b-256 469a165a692a90be73de28834b5509319d2e4aaf49e9c760dcc2733278686ff7

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f801fc3149b7f4d04dec981dcdd7b1ee1b14461fb8d660d8d5168ac923f567b2
MD5 07757417c288eae2c4f2fea9fe7cb652
BLAKE2b-256 b67bc04ac7aa89f89c6512c001917cd7eb51f4d8bed79718e485895819a019fa

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0395b30eac426cf08ed8143c0e8e20dbc6b5dfed68eb7d2a9acec3f19ff105ed
MD5 33d64e1049d3bf72875d0cf8518b7961
BLAKE2b-256 596bed248c8dff357a4be5589284b78d4559e6168f66f4f2639e8116c9eeb703

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3bc4f14fce9788b17ad5f2e4b4a6bb39af5453971ca883d05cdb454953e3520
MD5 74ba7d264bc10002b1a8849358cbd517
BLAKE2b-256 4f69ab4a0550ad4470bad48839ef3a023dc07511d2114d1a76ea5afe3800610b

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f0227a8edcef4d25ec5d26d6dcc07722f885948e096f9356a8f27bfccd74068f
MD5 a02000a414574bdf4e1e1562edd3c1cc
BLAKE2b-256 4e7fd7358f5844b4c20db828124fd5df7816df3e59725b081b88cdd420ac3002

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e4cb1a5ff488f7165134f528de691bb6345cf9f2c37dcaebaf4a4cd9082c3b98
MD5 21566e07aa527bb7282ae6b1123c4b8b
BLAKE2b-256 d8c308f026d8eda09df902f0e91dae17e40beebcc8a5b97a327aea895b2aa978

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1199ddd834ac9f57ddc4a109d69b49649608a7506d86691549157689536ab55f
MD5 00cde612188bad62431eb845fa8821f0
BLAKE2b-256 d0ff86b4078dec10901ac2d889fee21f4e59cf6b260a90acf0d7e7fd9a40804c

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp37-cp37m-win32.whl.

File metadata

  • Download URL: scikit_labs-0.0.1rc2-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 427.6 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scikit_labs-0.0.1rc2-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 08ce47d2227b8d1f7ab8661c11c31a87bb2c0f068f35ceeebfb93f33545574cf
MD5 e5050e6f01f1d994cbeb6e46c6f2575f
BLAKE2b-256 8178b4030c5aa72e6d057120dbd59ee51957348b55caabbdeac24766a3daa7aa

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 f6d130bde4f52cd51682f590ad694ada711fb97e9f14ef0b815ffc880afae850
MD5 4157e48959714b84fe8fee7e8dc1c234
BLAKE2b-256 85d2afd13f902884e3667ea9d07a77e50bc2100f5a33c7b3ab96c93f1e90173f

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp37-cp37m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp37-cp37m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 0205570a527f5f97410ce19f037cd6605fef3b771bb15823c06c684470a0f47a
MD5 b8b11928621f64b10937e3077c759d7a
BLAKE2b-256 7028ced014a3b5ca715798baff40d4a7b48d84a37029b782d4905c6dc81c526b

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d8dc35d54cbfaea6ad8d420b666e9cfc0829a71b3390c05c85963ae87b826e85
MD5 9a3ba095643e6dbe22d91c2ee5e6be12
BLAKE2b-256 8bd55fad1738a3d14a60b76b04e81928023f40f75c63e19470ade095c4fc28d2

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4ba01aa1cbcabb9cd9049a09733645fc7b8eedcd2342278b2800d44efe3ace51
MD5 0368cd1f57653d2c82b6bc2012393371
BLAKE2b-256 4691a01ff94c58f61d4199a4d8bcb61736442749dbe2466864ea29215387ace9

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f99f36e5cc9b374c71098c6457db02efd44dc8199a960dd632833a05df36fddb
MD5 68e8436d978a72450302e2f548f5c52f
BLAKE2b-256 9aea1fa6e3c4c18eebddcaa018f8540925bdc24b80c1105397d3b3c76575532e

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 a29dd3835c590062f25c8746342feaca69b39d5caaa41ef11dff3260b3cc3f37
MD5 31b785664c6a46c3dbd26a0ec4ba3af2
BLAKE2b-256 6d599c74629f45eca2722be92a02c5e050aa104e94ad92c78c25a400392ef497

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp36-cp36m-win32.whl.

File metadata

  • Download URL: scikit_labs-0.0.1rc2-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 427.6 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for scikit_labs-0.0.1rc2-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 9adad7c4778fc321b82704b7f13535198dfb026909112773a5e991ee2f56a292
MD5 51a4474e8bdfc6f16257f7f0adbf838c
BLAKE2b-256 1054de6710b0de474b9f3f5e180eed2128bd29b943cc326b202cb01db5c68c04

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 63623d78a1d98c51ad91c5659542be355c9507cef57d1dc4e8901ac88b215c9f
MD5 68da33c88b5f6197123fb94a48b54a74
BLAKE2b-256 e71442eb8033cf626e7f5433b51a36d73ceb30988ef760995acb940cb012832d

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp36-cp36m-musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp36-cp36m-musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 edaff50d7bc91cb02b8f7e605e695dc23891867d029e701278ef40dcc384c7f6
MD5 020292d893caed44730625f30b564176
BLAKE2b-256 39d637df4364682f386dee4e7f0dc392be12bf192d36a13dac76222f61779c0d

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c634c70490e9358ff6f5d9cf7646d2c5f900db16b43668913c86cd2e7f42f6e
MD5 4da4ca40cb9a54067c82c7adf1f515c8
BLAKE2b-256 43f88daeb11cc068ada4ec53fa9e80e08cb00e1c7435fa9d70bcace195f76207

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2cedf577a0f4fb175e7cce45baa09b619a9d643552356b98590730f11cf2aefc
MD5 0cd02409035cf0678dfdf7b493194b4a
BLAKE2b-256 15f236249ef2af3d97c5bf80fc4181f8b3ef82f2cf7b9fd0b5d462942b05c552

See more details on using hashes here.

File details

Details for the file scikit_labs-0.0.1rc2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for scikit_labs-0.0.1rc2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3b77ff100ef9e0adac941ca5e61556a76d3ea4e2610de660bff01bd904c26d33
MD5 51c845560ac241a52116eebe147a8ef6
BLAKE2b-256 1872a0f5cc0325a62462677080a15e6216b8831362c4f778f264ed81bc388ae7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page