Skip to main content

Intel(R) Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.

Project description

Intel(R) Extension for Scikit-learn*

Build Status Coverity Scan Build Status Join the community on GitHub Discussions PyPI Version Conda Version

With Intel(R) Extension for Scikit-learn you can accelerate your Scikit-learn applications and still have full conformance with all Scikit-Learn APIs and algorithms. This is a free software AI accelerator that brings over 10-100X acceleration across a variety of applications. And you do not even need to change the existing code!

The acceleration is achieved through the use of the Intel(R) oneAPI Data Analytics Library (oneDAL). Patching scikit-learn makes it a well-suited machine learning framework for dealing with real-life problems.

⚠️Intel(R) Extension for Scikit-learn contains scikit-learn patching functionality that was originally available in daal4py package. All future updates for the patches will be available only in Intel(R) Extension for Scikit-learn. We recommend you to use scikit-learn-intelex package instead of daal4py. You can learn more about daal4py in daal4py documentation.

👀 Follow us on Medium

We publish blogs on Medium, so follow us to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:

🔗 Important links

💬 Support

Report issues, ask questions, and provide suggestions using:

You may reach out to project maintainers privately at onedal.maintainers@intel.com

🛠 Installation

Intel(R) Extension for Scikit-learn is available at the Python Package Index, on Anaconda Cloud in Conda-Forge channel and in Intel channel. Intel(R) Extension for Scikit-learn is also available as a part of Intel® oneAPI AI Analytics Toolkit (AI Kit).

  • PyPi (recommended by default)
pip install scikit-learn-intelex
  • Anaconda Cloud from Conda-Forge channel (recommended for conda users by default)
conda install -c conda-forge scikit-learn-intelex
  • Anaconda Cloud from Intel channel (recommended for Intel® Distribution for Python users)
conda install -c https://software.repos.intel.com/python/conda/ scikit-learn-intelex
[Click to expand] ℹ️ Supported configurations

📦 PyPi channel

OS / Python version Python 3.9 Python 3.10 Python 3.11 Python 3.12 Python 3.13
Linux [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU]
Windows [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU]

📦 Anaconda Cloud: Conda-Forge channel

OS / Python version Python 3.9 Python 3.10 Python 3.11 Python 3.12 Python 3.13
Linux [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU]
Windows [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU]

📦 Anaconda Cloud: Intel channel

OS / Python version Python 3.9 Python 3.10 Python 3.11 Python 3.12 Python 3.13
Linux [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU]
Windows [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU] [CPU, GPU]

You can build the package from sources as well.

⚡️ Get Started

Intel CPU optimizations patching

import numpy as np
from sklearnex import patch_sklearn
patch_sklearn()

from sklearn.cluster import DBSCAN

X = np.array([[1., 2.], [2., 2.], [2., 3.],
              [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
clustering = DBSCAN(eps=3, min_samples=2).fit(X)

Intel GPU optimizations patching

import numpy as np
from sklearnex import patch_sklearn, config_context
patch_sklearn()

from sklearn.cluster import DBSCAN

X = np.array([[1., 2.], [2., 2.], [2., 3.],
              [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
with config_context(target_offload="gpu:0"):
    clustering = DBSCAN(eps=3, min_samples=2).fit(X)

🚀 Scikit-learn patching

Configurations:

  • HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
  • SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8

Benchmarks code

Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the list of supported algorithms and parameters for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, submit an issue on GitHub.

⚠️ We support optimizations for the last four versions of scikit-learn. The latest release of scikit-learn-intelex-2024.0.X supports scikit-learn 1.0.X, 1.1.X, 1.2.X and 1.3.X.

📜 Intel(R) Extension for Scikit-learn verbose

To find out which implementation of the algorithm is currently used (Intel(R) Extension for Scikit-learn or original Scikit-learn), set the environment variable:

  • On Linux: export SKLEARNEX_VERBOSE=INFO
  • On Windows: set SKLEARNEX_VERBOSE=INFO

For example, for DBSCAN you get one of these print statements depending on which implementation is used:

  • SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: running accelerated version on CPU
  • SKLEARNEX INFO: sklearn.cluster.DBSCAN.fit: fallback to original Scikit-learn

Read more in the documentation.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

scikit_learn_intelex-2025.6.1-py313-none-win_amd64.whl (3.2 MB view details)

Uploaded Python 3.13Windows x86-64

scikit_learn_intelex-2025.6.1-py313-none-manylinux_2_28_x86_64.whl (4.3 MB view details)

Uploaded Python 3.13manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.6.1-py312-none-win_amd64.whl (3.2 MB view details)

Uploaded Python 3.12Windows x86-64

scikit_learn_intelex-2025.6.1-py312-none-manylinux_2_28_x86_64.whl (4.3 MB view details)

Uploaded Python 3.12manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.6.1-py311-none-win_amd64.whl (3.1 MB view details)

Uploaded Python 3.11Windows x86-64

scikit_learn_intelex-2025.6.1-py311-none-manylinux_2_28_x86_64.whl (4.3 MB view details)

Uploaded Python 3.11manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.6.1-py310-none-win_amd64.whl (3.1 MB view details)

Uploaded Python 3.10Windows x86-64

scikit_learn_intelex-2025.6.1-py310-none-manylinux_2_28_x86_64.whl (4.4 MB view details)

Uploaded Python 3.10manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.6.1-py39-none-win_amd64.whl (3.1 MB view details)

Uploaded Python 3.9Windows x86-64

scikit_learn_intelex-2025.6.1-py39-none-manylinux_2_28_x86_64.whl (4.4 MB view details)

Uploaded Python 3.9manylinux: glibc 2.28+ x86-64

File details

Details for the file scikit_learn_intelex-2025.6.1-py313-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py313-none-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: Python 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py313-none-win_amd64.whl
Algorithm Hash digest
SHA256 f38f50661185db5a3904392553f14f543717377fcc36837e95150ae44e185f9d
MD5 2781da53d7aa86a13470024c9c28d356
BLAKE2b-256 1d32172f037848230cd2f11961b92de2023eea4822af5621a095a08bf76d5b5b

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py313-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py313-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: Python 3.13, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py313-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 ed185beecc4e98f75aa59081974d7d2d3797d41d81e1f459c894442e3f2f1a50
MD5 0097d125fbe47567ac1cd8d715e503bb
BLAKE2b-256 6cf526c46c2ad15b76454d852d54011f7be2e3e2dc1da22b73d7db4b097d5095

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py312-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py312-none-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: Python 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py312-none-win_amd64.whl
Algorithm Hash digest
SHA256 632d8315e127282132a8ed3024e0c61b9eed94aa0b4b367ded37c6e31eae4ef4
MD5 3882e1ad11a3139f6a1e0d4da672acdb
BLAKE2b-256 a7c0d105121ed06c94024cdc7f8a5de8f5cda912c5cc4b9109368e2cb8ac7265

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py312-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py312-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: Python 3.12, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py312-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 5440179e4de2b9ed06dff5bea50447f95c5993a4496097530b5efb2b7d27733e
MD5 09135bc6754fd84738bdd3499d3bf3f2
BLAKE2b-256 b974ea26db823c32fd34603ae1179cf18a4b9a147d9ca6a2c18a0a084cb3d398

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py311-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py311-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: Python 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py311-none-win_amd64.whl
Algorithm Hash digest
SHA256 f0c5f05b31920ff2f148c98cf1224e5901b0c4fa492ab6f9dce199ae592192e0
MD5 c8879c8c80d5ec222a46407b0c955132
BLAKE2b-256 03295f766c7065a2a535c909875002d0642932c6af88789c8ba9b48c7bae53cf

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py311-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py311-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: Python 3.11, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py311-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 3ad96250cf8f015016986dd244058ff30e00207b2ab545dba7c6e378023016cd
MD5 acb5fdbc0c838d81a1ebcb4ab45318c5
BLAKE2b-256 97a80bb7819a9cc082826620b288688549cb9e5823aec84757ec40d3efa5d791

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py310-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py310-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: Python 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py310-none-win_amd64.whl
Algorithm Hash digest
SHA256 5270fb5f51aaa796adcc8ca3fb31c3fb20178c96699698c4316ab7b19ca61c2b
MD5 8069bd62ccdc6408c80ad96d30259c61
BLAKE2b-256 853788af74a75d522d9e2a3b3e7a05b93fef40c336f6454c04d4a61a8f7a72a1

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py310-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py310-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: Python 3.10, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py310-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 85dfc832a97586261daed3bc12677c33e7a3f05e479cc968b334bfda21b65838
MD5 e12b99a7c1604569ac4a0de98b238ea5
BLAKE2b-256 9e0accee1a2bf3ecb95fbab33a72994fb094c0e8357045de13b751e6195a931b

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py39-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py39-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: Python 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py39-none-win_amd64.whl
Algorithm Hash digest
SHA256 e4f07effe6a860ba540af3e89451d74582fdd1cd36c5bca45ca069b70f91fc25
MD5 388b1f77b297c1b02e9885e5f3869919
BLAKE2b-256 1d4b5f30204c37f9e763fa562cce52401f20b78ec02da4999fdb699d44fee60c

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.6.1-py39-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.6.1-py39-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: Python 3.9, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.4 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.6.1-py39-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 393fd187c35ea13fd96a71b3bcadf01be986f41177124fa3753a4e946ea26ae2
MD5 b1f3e3db425cc218f8723f400ae3d50d
BLAKE2b-256 e773a90190b3b651d35edae05632d2453c0a37cc5fe1576c35522d9397827af6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page