Skip to main content

Intel® Extension for Scikit-learn is a seamless way to speed up your Scikit-learn application.

Project description

Intel(R) Extension for Scikit-learn*

Join the community on GitHub Discussions PyPI Version Conda Version

Extension for Scikit-learn is a free software AI accelerator designed to deliver over 10-100X acceleration to your existing scikit-learn code. The software acceleration is achieved with vector instructions, AI hardware-specific memory optimizations, threading, and optimizations.

With Extension for Scikit-learn, you can:

  • Speed up training and inference by up to 100x with equivalent mathematical accuracy
  • Benefit from performance improvements across different hardware configurations, including GPUs and multi-GPU configurations
  • Integrate the extension into your existing Scikit-learn applications without code modifications
  • Continue to use the open-source scikit-learn API
  • Enable and disable the extension with a couple of lines of code or at the command line

🛠 Installation

Intel(R) Extension for Scikit-learn is available at the Python Package Index, in Conda-Forge and in Intel's conda channel. Intel(R) Extension for Scikit-learn is also available as a part of Intel® oneAPI AI Analytics Toolkit (AI Kit).

To install through pip:

pip install scikit-learn-intelex

See the documentation for more details about supported platforms and other ways of installing it.

You can build the package from sources as well.

⚡️ Get Started

Easiest way to benefit from accelerations from the extension is by patching scikit-learn with it:

  • Enable CPU optimizations
import numpy as np
from sklearnex import patch_sklearn
patch_sklearn()

from sklearn.cluster import DBSCAN

X = np.array([[1., 2.], [2., 2.], [2., 3.],
              [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
clustering = DBSCAN(eps=3, min_samples=2).fit(X)
import numpy as np
from sklearnex import patch_sklearn, config_context
patch_sklearn()

from sklearn.cluster import DBSCAN

X = np.array([[1., 2.], [2., 2.], [2., 3.],
              [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
with config_context(target_offload="gpu:0"):
    clustering = DBSCAN(eps=3, min_samples=2).fit(X)

Usage without patching

Alternatively, all functionalities are also available under a separate module which can be imported directly, without involving any patching.

  • To run on CPU:

    import numpy as np
    from sklearnex.cluster import DBSCAN
    
    X = np.array([[1., 2.], [2., 2.], [2., 3.],
                  [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
    clustering = DBSCAN(eps=3, min_samples=2).fit(X)
    
  • To run on GPU:

    import numpy as np
    from sklearnex import config_context
    from sklearnex.cluster import DBSCAN
    
    X = np.array([[1., 2.], [2., 2.], [2., 3.],
                  [8., 7.], [8., 8.], [25., 80.]], dtype=np.float32)
    with config_context(target_offload="gpu:0"):
        clustering = DBSCAN(eps=3, min_samples=2).fit(X)
    

🚀 Scikit-learn patching

Configurations:

  • HW: c5.24xlarge AWS EC2 Instance using an Intel Xeon Platinum 8275CL with 2 sockets and 24 cores per socket
  • SW: scikit-learn version 0.24.2, scikit-learn-intelex version 2021.2.3, Python 3.8

Benchmarks code

Intel(R) Extension for Scikit-learn patching affects performance of specific Scikit-learn functionality. Refer to the list of supported algorithms and parameters for details. In cases when unsupported parameters are used, the package fallbacks into original Scikit-learn. If the patching does not cover your scenarios, submit an issue on GitHub.

Read more about it in the documentation for scikit-learn patching.

👀 Follow us on Medium

We publish blogs on Medium, so follow us to learn tips and tricks for more efficient data analysis with the help of Intel(R) Extension for Scikit-learn. Here are our latest blogs:

🔗 Important links

💬 Support

Report issues, ask questions, and provide suggestions using:

You may reach out to project maintainers privately at onedal.maintainers@intel.com

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scikit_learn_intelex-2025.10.1-py314-none-win_amd64.whl (3.2 MB view details)

Uploaded Python 3.14Windows x86-64

scikit_learn_intelex-2025.10.1-py314-none-manylinux_2_28_x86_64.whl (4.9 MB view details)

Uploaded Python 3.14manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.10.1-py313-none-win_amd64.whl (3.2 MB view details)

Uploaded Python 3.13Windows x86-64

scikit_learn_intelex-2025.10.1-py313-none-manylinux_2_28_x86_64.whl (4.9 MB view details)

Uploaded Python 3.13manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.10.1-py312-none-win_amd64.whl (3.2 MB view details)

Uploaded Python 3.12Windows x86-64

scikit_learn_intelex-2025.10.1-py312-none-manylinux_2_28_x86_64.whl (4.9 MB view details)

Uploaded Python 3.12manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.10.1-py311-none-win_amd64.whl (3.1 MB view details)

Uploaded Python 3.11Windows x86-64

scikit_learn_intelex-2025.10.1-py311-none-manylinux_2_28_x86_64.whl (4.9 MB view details)

Uploaded Python 3.11manylinux: glibc 2.28+ x86-64

scikit_learn_intelex-2025.10.1-py310-none-win_amd64.whl (3.1 MB view details)

Uploaded Python 3.10Windows x86-64

scikit_learn_intelex-2025.10.1-py310-none-manylinux_2_28_x86_64.whl (4.9 MB view details)

Uploaded Python 3.10manylinux: glibc 2.28+ x86-64

File details

Details for the file scikit_learn_intelex-2025.10.1-py314-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py314-none-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: Python 3.14, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py314-none-win_amd64.whl
Algorithm Hash digest
SHA256 cf1cc11fe4b4dc770e0c07fe257e5318b5d97fe0c854dbabb69e2a7f858a8053
MD5 713fa3d9ffc6dfd9de9081eeaa61be47
BLAKE2b-256 3e790c24d5a6a60c51504620281ce25f25f7b32118509bafb16738cdf45df67d

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py314-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py314-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: Python 3.14, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py314-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 887c27b1b084d51b518e4700c13067e70d14b62cf519782c79f5a5f64f4ba2fd
MD5 fc38e4de8b3ceb299053a7a8e6a66080
BLAKE2b-256 3547ae21d36852291ba736d4b0602d571a7714809620ab37cd22b5b56f35f252

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py313-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py313-none-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: Python 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py313-none-win_amd64.whl
Algorithm Hash digest
SHA256 748e68e6981993b6889469f6391fef66f1af912e9b3cd91b936a0220e0b061b9
MD5 d6966b81e6eeb7611b1d08c4cf68f8e3
BLAKE2b-256 dedc28d1121039e712d86e8ec84ba157c8cb7337eb89fc81270218cf030de1f4

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py313-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py313-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: Python 3.13, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py313-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 d5d5be1bd7158793ed7151b33e203434452c4160b979974e31a656caccc7ce9a
MD5 c9c2a0ec79dcd2eb0bad53d1ff62a163
BLAKE2b-256 4960ecf5e64285b80a0edd930b85a5f8c5f47226d15456263987081121286588

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py312-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py312-none-win_amd64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: Python 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py312-none-win_amd64.whl
Algorithm Hash digest
SHA256 4e38dec4864e2284d52a708e12bb66c3663eba4bb5a6821489dfab65fe4937ca
MD5 23be03b4a04bebec67c4273ab34f4d52
BLAKE2b-256 23353402908afbc4475ebc7fc8df91848b3fc24b06699f46dc0ee37825e0f046

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py312-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py312-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: Python 3.12, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py312-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4d47d26bec9eab207f6d5b672d9e7c21bd817fe4973558eeb1640bf31d7cbf58
MD5 f5349e234c4c02b0c91b80afc305dbde
BLAKE2b-256 17f650983162348c85059f1fab5ca673fcf34a66f3346581cc47221f2c6c1bb4

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py311-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py311-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: Python 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py311-none-win_amd64.whl
Algorithm Hash digest
SHA256 6a75e1c1ef7d5abb483646a723537edab82111d4d4901c4492f2e9ac27336842
MD5 c2f34ad5cdb93637c9d6e60b0effcd36
BLAKE2b-256 a0ceaf71395bfd929cd7c770c798c2e14f07cc8ef18fad9557b4ee403b3bd117

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py311-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py311-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: Python 3.11, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py311-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 42e7e8c667c2bee049e6b13ee767d071ca95a1c4127ce8b5512a56ebeb2b4222
MD5 8208135d7acf5c38d347e91e593bb5da
BLAKE2b-256 1e930d8729bb99d78c13c27c33bd71aa63596d622467d54d29ab399a1b6da61e

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py310-none-win_amd64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py310-none-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: Python 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py310-none-win_amd64.whl
Algorithm Hash digest
SHA256 2bfbba9e0e6411f4284fc42496282f073e7c66f5ccd6cf7a3a83b9bb7404ebb5
MD5 9270d0668720c926cd146d759c2b9c0d
BLAKE2b-256 064d7fddb2a2873c1ebe35ad3b48028b13c57111cce7b286442c4ff05152901b

See more details on using hashes here.

File details

Details for the file scikit_learn_intelex-2025.10.1-py310-none-manylinux_2_28_x86_64.whl.

File metadata

  • Download URL: scikit_learn_intelex-2025.10.1-py310-none-manylinux_2_28_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: Python 3.10, manylinux: glibc 2.28+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.32.5 rfc3986/1.5.0 tqdm/4.57.0 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for scikit_learn_intelex-2025.10.1-py310-none-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f1ef222dbb360779b241bbe80af437ee6af0d70e2d7efa79b7c522d7c15afcda
MD5 1ed1091675e36642168e95b1df763e7f
BLAKE2b-256 234ff0dd6615ae6366142902aa724c2b23dbafc64dc8c7206b4e00a435aa62b9

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page