Skip to main content

Multiple point statistical (MPS) simulation

Project description

https://img.shields.io/pypi/v/scikit-mps.svg?style=flat-square https://img.shields.io/pypi/pyversions/scikit-mps.svg?style=flat-square https://img.shields.io/badge/license-MIT-blue.svg?style=flat-square https://colab.research.google.com/assets/colab-badge.svg

scikit-mps is a Python interface to MPSlib, https://github.com/ergosimulation/mpslib/, which is a C++ library for geostatistical multiple point simulation, with implementations of ‘SNESIM’, ‘ENESIM’, and ‘GENESIM’

It contains three modules:
  • mpslib: Interacts with MPSlib

  • eas: read and write EAS/GSLIB formatted files

  • trainingimages: Access to a number of trainingimages

import mpslib as mps
O=mps.mpslib(method='mps_snesim_tree')
O.run()
O.plot_reals()
O.plot_etype()

PyPI

<http://pypi.python.org/pypi/scikit-mps>

Requirements

  • Numpy >= 1.0.2

  • Matplotlib >= 1.0.2

  • MPSlib needs to be downloaded, installed, and in the system path (https://github.com/ergosimulation/mpslib/) [Any 11 C++11 compiler should work, such as gcc, MinGW, MSVC]

Installing

  • Via pip:

    pip install scikit-mps

optionally download and reinstall:

import mpslib as mps
O=mps.mpslib
O.compile_mpslib()
  • From source code

cd ROOT_OF_MPSLIB/python
pip install .
cd ROOT_OF_MPSLIB
make clean
make

If you wish to develop the scikit-mps package, then install it in editable developer mode using

pip install -e .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit-mps-0.5.0.tar.gz (5.1 MB view details)

Uploaded Source

Built Distribution

scikit_mps-0.5.0-py2.py3-none-any.whl (5.1 MB view details)

Uploaded Python 2 Python 3

File details

Details for the file scikit-mps-0.5.0.tar.gz.

File metadata

  • Download URL: scikit-mps-0.5.0.tar.gz
  • Upload date:
  • Size: 5.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scikit-mps-0.5.0.tar.gz
Algorithm Hash digest
SHA256 d7155f37cc042ed011f190e9cd54e61c0026f1d089a4648c1b278f5434a471b1
MD5 9ba87b84ccbc964f8dc235bc365d7e66
BLAKE2b-256 84dd96fe1ca2dc3773c070f187aa26828a8094fe3ec9b10eee72ce415d6136ff

See more details on using hashes here.

File details

Details for the file scikit_mps-0.5.0-py2.py3-none-any.whl.

File metadata

  • Download URL: scikit_mps-0.5.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.15

File hashes

Hashes for scikit_mps-0.5.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3d0c2446095ae4813a85ebde68b296a39699deaab910fb9e2c30b283e3444966
MD5 9fb4845c08ffc1fdb1ef277623256ae2
BLAKE2b-256 3392749357060fdda5f2997086f6876fa9c5f970ae8c9570679b48f139dd0758

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page