Survival analysis built on top of scikit-learn
Project description
scikit-survival
scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizing the power of scikit-learn, e.g., for pre-processing or doing cross-validation.
About Survival Analysis
The objective in survival analysis (also referred to as time-to-event or reliability analysis) is to establish a connection between covariates and the time of an event. What makes survival analysis differ from traditional machine learning is the fact that parts of the training data can only be partially observed – they are censored.
For instance, in a clinical study, patients are often monitored for a particular time period, and events occurring in this particular period are recorded. If a patient experiences an event, the exact time of the event can be recorded – the patient’s record is uncensored. In contrast, right censored records refer to patients that remained event-free during the study period and it is unknown whether an event has or has not occurred after the study ended. Consequently, survival analysis demands for models that take this unique characteristic of such a dataset into account.
Requirements
Python 3.9 or later
ecos
joblib
numexpr
numpy
osqp
pandas 1.0.5 or later
scikit-learn 1.4 or 1.5
scipy
C/C++ compiler
Installation
The easiest way to install scikit-survival is to use Anaconda by running:
conda install -c conda-forge scikit-survival
Alternatively, you can install scikit-survival from source following this guide.
Examples
The user guide provides in-depth information on the key concepts of scikit-survival, an overview of available survival models, and hands-on examples in the form of Jupyter notebooks.
Help and Support
Documentation
HTML documentation for the latest release: https://scikit-survival.readthedocs.io/en/stable/
HTML documentation for the development version (master branch): https://scikit-survival.readthedocs.io/en/latest/
For a list of notable changes, see the release notes.
Bug reports
If you encountered a problem, please submit a bug report.
Questions
If you have a question on how to use scikit-survival, please use GitHub Discussions.
For general theoretical or methodological questions on survival analysis, please use Cross Validated.
Contributing
New contributors are always welcome. Please have a look at the contributing guidelines on how to get started and to make sure your code complies with our guidelines.
References
Please cite the following paper if you are using scikit-survival.
S. Pölsterl, “scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn,” Journal of Machine Learning Research, vol. 21, no. 212, pp. 1–6, 2020.
@article{sksurv,
author = {Sebastian P{\"o}lsterl},
title = {scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {212},
pages = {1-6},
url = {http://jmlr.org/papers/v21/20-729.html}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for scikit_survival-0.23.0-cp312-cp312-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f2677aff1064d8fd0a054fbd1128e3b76e7e1f58b6d92ed5fdd63f67deb3e9d |
|
MD5 | aa7ed134e69fc228c7fa102aad5544e7 |
|
BLAKE2b-256 | b4bd41d1c3efb50e44e820413c77bfbf80b68c940771ce8acaf49c1a54289c19 |
Hashes for scikit_survival-0.23.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fb45590824b64162a6b3fdf04537d3cb54bb1c84bf825909f0437433656e4c37 |
|
MD5 | 4576bbbd05bd1e5f7471a3eeb9816984 |
|
BLAKE2b-256 | 0485f71f56f851e1856cee6f28daf700862380286f7962fed29c7acbd5238204 |
Hashes for scikit_survival-0.23.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0d5fe7447d38b9c0e12eeffec561504f988cdef7ba56e01c7aa1c4b123abe727 |
|
MD5 | 39ef34756ef279b698addbf600d2d571 |
|
BLAKE2b-256 | edd1a185f3b924f39b1d11b7281c54e92471c4b612736f861148ea2e5cee75cc |
Hashes for scikit_survival-0.23.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9f5de22f6abec42a379184ebd423f1ed7bb396aebe9cca6fecfaf95585f9ad39 |
|
MD5 | 663b911212ab02293c13b372011df486 |
|
BLAKE2b-256 | 1b4da6ee36c3c3d6c2588f1c7a7fbf8320f39263193c41c919d8b1e6005bf46c |
Hashes for scikit_survival-0.23.0-cp311-cp311-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | df34e2a4979c6c76bbc5f9271c1c21af9faa4ff320ed1e5e81de0e93f4920654 |
|
MD5 | 0af1c00a275ebc7114298d8e98b332ba |
|
BLAKE2b-256 | 8532952694a1628bee0841a70fb01ed9ef30a6501edadbb3cfd95d6d40b74a41 |
Hashes for scikit_survival-0.23.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2150baeb2dcdb3b46b1a3719a5ea428963dc9fddbb3933fa26dafa916ccb9cdc |
|
MD5 | f8f3a67b35314553733d34ea44c4594b |
|
BLAKE2b-256 | d963a0ec6abf68fe215001ff07450c96e6f7393b2ee4cd3fb382b0bc8ff9f88d |
Hashes for scikit_survival-0.23.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | af6fdbbf9ab4eb56ff0c50eace1a1bfa7bc8680dc567dbbd06b3f4ba2d31a236 |
|
MD5 | f487c8d540b374d82e9a4c84f5aa1db8 |
|
BLAKE2b-256 | f3add7b779d43a1ad78e1cecee3a0f91d12eab0ddfc1b074314c994796d5d53f |
Hashes for scikit_survival-0.23.0-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | aca515a34e1076bb2553d82bfd73c91ae1f700431e4ca2980366bbb96383f3c7 |
|
MD5 | 02359b02e6bd1831e0b7032e8cc18f41 |
|
BLAKE2b-256 | 082dee14bdba3d9f2b6daff5120bfa159ca2d1e37c98f64cc2422bd6cf2e10ed |
Hashes for scikit_survival-0.23.0-cp310-cp310-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81a44406823e20747007e6568cb9f03138ecbea03d3fe3b0e565bf45706c5e2a |
|
MD5 | f3d738955c76f96048fac178aecff612 |
|
BLAKE2b-256 | d72489a7406c44b858e3a55594f32d91864e1febc5546e6c8a537c7618372920 |
Hashes for scikit_survival-0.23.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | a788edba57a1eec3f053b63ba702177305f589c469f25261578f4f759aa7182d |
|
MD5 | 51620ac623fc9f6b032241e47467cc43 |
|
BLAKE2b-256 | 74a6a51b1a788eceea5567afb52c2daa85a90794faaadbe068042fecb0d2f4fa |
Hashes for scikit_survival-0.23.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 09632a5f1f4840b0595bcbff2a3db19aed4d91363f254108efb0d54e4be0144a |
|
MD5 | 2adbcab35adb4506a31f45e2c5ce4625 |
|
BLAKE2b-256 | b0ec6677a50967811b7c353b70a23d26c610f507b6249e22df25abd75b4fb211 |
Hashes for scikit_survival-0.23.0-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f86681c27ba7661ef141f488a7cd8489e150627b5d4ed886c548de2acd473b3 |
|
MD5 | b3e7457a41821f02f05194173dab8fcd |
|
BLAKE2b-256 | cafbb347f6db31ab823d62d29fbd050e0b660b8f6a573b81db12f6dbb138dbaf |
Hashes for scikit_survival-0.23.0-cp39-cp39-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cf209b302eb03a6e33c8ea85fdc82c25784ef9f7bed414cdb14fdf2e19258e54 |
|
MD5 | 3d7fa881233ce252128621fa332d4ba8 |
|
BLAKE2b-256 | 7c1ec627e9a0e7d75ba65c3d6bc9c54b2cc969dfe0ba1de366f87cc22c3f672d |
Hashes for scikit_survival-0.23.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2ef07d56ad408f9122c1ccdacdb487a8a2dfed5cd2d863d86cc326bb4153fc0b |
|
MD5 | 9c8f00ac01b3945dabe302f1891534d2 |
|
BLAKE2b-256 | b87c2129cdb0776f68d225cf587da1e55c2b7bf318027013b24f8ecee1ef5fa9 |
Hashes for scikit_survival-0.23.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d229abe19fafd1ba48c9ea02ee9939d407456ac5dd562b8a9c4a2b37bc604eb0 |
|
MD5 | 4c15968e31d8ec0916e7862d3591beb2 |
|
BLAKE2b-256 | ec20b0e0133bb5a4208f09883f55704dbc9c839b99132f0137a35f892f6890c5 |
Hashes for scikit_survival-0.23.0-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b6ddd4cc10af520c9ea820b19c94b6fbece26c6c338e5bfd731fa7bf4b754b7 |
|
MD5 | 5adf9bc39e0812b6533483b40c1fed73 |
|
BLAKE2b-256 | 6cd4e6fdfcda19c09dc1db95bf28b8b32f1c5677cc8649bd57be3e5f08265e57 |