Skip to main content

Survival analysis built on top of scikit-learn

Project description

License readthedocs.org Digital Object Identifier (DOI)

GitHub Actions Tests Status Windows Build Status on AppVeyor codecov Codacy Badge

scikit-survival

scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizing the power of scikit-learn, e.g., for pre-processing or doing cross-validation.

About Survival Analysis

The objective in survival analysis (also referred to as time-to-event or reliability analysis) is to establish a connection between covariates and the time of an event. What makes survival analysis differ from traditional machine learning is the fact that parts of the training data can only be partially observed – they are censored.

For instance, in a clinical study, patients are often monitored for a particular time period, and events occurring in this particular period are recorded. If a patient experiences an event, the exact time of the event can be recorded – the patient’s record is uncensored. In contrast, right censored records refer to patients that remained event-free during the study period and it is unknown whether an event has or has not occurred after the study ended. Consequently, survival analysis demands for models that take this unique characteristic of such a dataset into account.

Requirements

  • Python 3.9 or later

  • ecos

  • joblib

  • numexpr

  • numpy

  • osqp

  • pandas 1.4.0 or later

  • scikit-learn 1.4 or 1.5

  • scipy

  • C/C++ compiler

Installation

The easiest way to install scikit-survival is to use Anaconda by running:

conda install -c conda-forge scikit-survival

Alternatively, you can install scikit-survival from source following this guide.

Examples

The user guide provides in-depth information on the key concepts of scikit-survival, an overview of available survival models, and hands-on examples in the form of Jupyter notebooks.

Help and Support

Documentation

Bug reports

  • If you encountered a problem, please submit a bug report.

Questions

  • If you have a question on how to use scikit-survival, please use GitHub Discussions.

  • For general theoretical or methodological questions on survival analysis, please use Cross Validated.

Contributing

New contributors are always welcome. Please have a look at the contributing guidelines on how to get started and to make sure your code complies with our guidelines.

References

Please cite the following paper if you are using scikit-survival.

S. Pölsterl, “scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn,” Journal of Machine Learning Research, vol. 21, no. 212, pp. 1–6, 2020.

@article{sksurv,
  author  = {Sebastian P{\"o}lsterl},
  title   = {scikit-survival: A Library for Time-to-Event Analysis Built on Top of scikit-learn},
  journal = {Journal of Machine Learning Research},
  year    = {2020},
  volume  = {21},
  number  = {212},
  pages   = {1-6},
  url     = {http://jmlr.org/papers/v21/20-729.html}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_survival-0.23.1.tar.gz (2.7 MB view details)

Uploaded Source

Built Distributions

scikit_survival-0.23.1-cp313-cp313-win_amd64.whl (823.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

scikit_survival-0.23.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.1-cp313-cp313-macosx_11_0_arm64.whl (834.3 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

scikit_survival-0.23.1-cp313-cp313-macosx_10_13_x86_64.whl (862.7 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

scikit_survival-0.23.1-cp312-cp312-win_amd64.whl (825.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

scikit_survival-0.23.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.1-cp312-cp312-macosx_11_0_arm64.whl (840.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

scikit_survival-0.23.1-cp312-cp312-macosx_10_13_x86_64.whl (868.9 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

scikit_survival-0.23.1-cp311-cp311-win_amd64.whl (819.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

scikit_survival-0.23.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.1-cp311-cp311-macosx_11_0_arm64.whl (835.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

scikit_survival-0.23.1-cp311-cp311-macosx_10_13_x86_64.whl (861.6 kB view details)

Uploaded CPython 3.11 macOS 10.13+ x86-64

scikit_survival-0.23.1-cp310-cp310-win_amd64.whl (819.8 kB view details)

Uploaded CPython 3.10 Windows x86-64

scikit_survival-0.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.1-cp310-cp310-macosx_11_0_arm64.whl (835.8 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

scikit_survival-0.23.1-cp310-cp310-macosx_10_13_x86_64.whl (861.9 kB view details)

Uploaded CPython 3.10 macOS 10.13+ x86-64

scikit_survival-0.23.1-cp39-cp39-win_amd64.whl (823.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

scikit_survival-0.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

scikit_survival-0.23.1-cp39-cp39-macosx_11_0_arm64.whl (839.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

scikit_survival-0.23.1-cp39-cp39-macosx_10_13_x86_64.whl (865.5 kB view details)

Uploaded CPython 3.9 macOS 10.13+ x86-64

File details

Details for the file scikit_survival-0.23.1.tar.gz.

File metadata

  • Download URL: scikit_survival-0.23.1.tar.gz
  • Upload date:
  • Size: 2.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.13.0

File hashes

Hashes for scikit_survival-0.23.1.tar.gz
Algorithm Hash digest
SHA256 9ee5835e6bd74eab69aac0e71511cc4c033d085bed609e5da771dac053ff7e27
MD5 e42ce319a43c4cf7ba473f7ef5be519f
BLAKE2b-256 14c6c3b7e1620b0ab78fbbb9d41f3445dddec14783c4e410be1d20ef57c9c26b

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7b37e06215b002fd966a4c9f10d16e9baeea002fbd7c58a1adbec6a4b02c1d35
MD5 fb086e3c78f08a6c84eb528a71a51f72
BLAKE2b-256 e75b4d65bf0855dc9f0adb29b89e8232625f306ea03121515fc83050ca4ea2e4

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 58147946da26a67efe8ffdab82d51edb45b0fbc9073044a127efba1003e94e24
MD5 5f87fc114bcadfee4d9517ad1a1b37d4
BLAKE2b-256 09b28dddba4a1c9e2b1acbcda4dc6ed46becb2f893488d087fe4db4dd1578a43

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 414df883219fe16e7b1c0c3ff0e6d29657cfc6118d5cc19ee71254b56617ad76
MD5 cb957abc1b6faa62a6e0e48906c1674e
BLAKE2b-256 d9fae7dd72b6a757c635feaaf581e73567a49d9cdaaf9ef944702f33c9c3ada4

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 22c36a14e0dd3684041263e6da2a62d689e2177fec450bc006a97751ff478e5e
MD5 c4a2357a8643ce0fcaa7de3c960ed72a
BLAKE2b-256 1c957f60ddb173e48e4627b3e64d5ebfdf77683750f4303004d7dd7b5dd73102

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d1bf4f985258edb5e9eb370767068098474a72bd915b41397468924d2abbeca8
MD5 3bde4c6d8e3f3f91389d851a0d46a6fd
BLAKE2b-256 2de8220ce2fcd55509c3c6348a9648dffc6374dfb0121c05b8b132f15d8f7e0f

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89d120ab736b5fe6c60fd24cf277dfff4ad54691a4b0dd9af30b9623815d89fe
MD5 c37a18090285288dc12c76785d3cbb71
BLAKE2b-256 a24df5fe5a1cfffbdd38806b5162163a882b88f76efefa016c21ee0cab542c28

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 10110ca9d93d3b0fbf2e00532020e9caad1d2bbd01a0dc4bec483399f0dc8634
MD5 b232b6fc932affa72a0117db79f4b300
BLAKE2b-256 96d5967b956fa5d5bee4ec71df0f7afc8bd6aacbf492de9c45967143567d93f8

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8f03355ee123e490fc4f1d1387adc94f20f56260818addc090b4699d01174147
MD5 c35d152327acaeab6ab06e23f009063e
BLAKE2b-256 a2680a9c6b7ed550888a9204f46fc848e3fa9bce5c08a018d40fa0b32d9387bf

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 ff51e415b9cfbc47396d31b69532f2fff492bb99467c262e8abcc9b3c5cc430c
MD5 81543e75292e9c28b6db6d69ebb3bc30
BLAKE2b-256 f57ca9edfd93c25d7bb35d0d9f0715d7730d56ffa3ae927b7d109cf51b6255e0

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6d41e1ec8f801f06212add15472a6131cdad859ca4a18d9afe0e7eb17b369b76
MD5 318076fef5c53291eafdd9429546b743
BLAKE2b-256 64e33313867cd4f0f44d702610db6f209be30ec9a58fe50479d8c1be8ff99dd7

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b1957c10606060a2723e14542ccac14be26258f8dc84adfbb74e33f864895550
MD5 79cbdf8649c19f5cd638bf008d1fe0d4
BLAKE2b-256 e34fd55da4cbae9b211d6a12244ac133877b4544b6a8f205776918d7b9ffd9fc

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp311-cp311-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp311-cp311-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 70d681ae9a7ac05986c214e63ee161eebde544f06fd0b10394a8f60c86e9e959
MD5 601872eb3ccc3f1cc795250341ff7175
BLAKE2b-256 b88518972566c4fba10c4a363059167883eea6cb3d885cc350fbb945dd4ea01d

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 b72558dc5752dc60009ad645242eb438c61b92dee87f08a165718d9992663c3e
MD5 6186172b398ff4ffaf154863793727fe
BLAKE2b-256 5cdcb00e0a703a52134fb92de8164878c5bcdf52872b3aa96d5abaa4c4c488ad

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 24877fea2ae35af07f4db093cce60779d69c833505f72a0d9d0b5276ef924055
MD5 f53f43ce11162d3127b12c7e3e96209b
BLAKE2b-256 75abed53c8defb11b79db03e741de837c84d3c19bfcdd020952dbfce83c98155

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c78a347f6c6b2d982c8a3d8eff34527bbc5542ccfed7ba4fb4bbb116bf449e26
MD5 881c9e3364b334f233ab29ac65df6f43
BLAKE2b-256 05c0a3f0d07f53c4c2bb44c5ad480cb827d18b2baed966f04ae042b6368e6ee2

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp310-cp310-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp310-cp310-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 e3b03eba833b8ea6490b746c3f5dfb2d27a361b618134c90a76c84facd8114d7
MD5 aa30c5537b66e14b0811a1c7d297a0d6
BLAKE2b-256 a1498a65b09aa994cd302c44aba8f390bd9b0e49f5eba5d5db1c7b08aaeff032

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2253931bd059d7dfa9cf60c06ccda037010eb04797372656138562e6f39118f2
MD5 e16aa96b778df192eb9a64ce43be4124
BLAKE2b-256 fbbf555950f0f6ac3c7bccc6ef983edb847d00c3281ce6f55c0e938485e76bd0

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f15a22602aecd24179a50c925efea000924f29ed0d4b23fd755b34f39ae2a57f
MD5 7894bf0e95257b0755dd06ca2dfba9c7
BLAKE2b-256 4fade2f263d931777357080d20b2b1170f822ea12d6c2d90876be8eaa27827f2

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9660389651ac7bf888a84b573a7c440bf919fc4906594b30421943bae9c6da4b
MD5 4ff8e8db27e64ce0512c44a7d1b37e2b
BLAKE2b-256 86ed8ded8530604d6c04db77f92347fcbe42c168a21fdeffea0c49f58a761564

See more details on using hashes here.

File details

Details for the file scikit_survival-0.23.1-cp39-cp39-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for scikit_survival-0.23.1-cp39-cp39-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 add302f15e0e7eead5dcfc45839abbd29768b3b8fe1ce3064a38ae82d9db70f5
MD5 493724d184cc24c4b2736512659efd4e
BLAKE2b-256 ffe88b3e6dd1cfc35e76d18ff290040cd9debd91103adfaac80f8064f9013c8b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page