Skip to main content

scikit-transformers is a very usefull package to enable and provide custom transformers such as LogColumnTransformer, BoolColumnTransformers and others fancy transformers.

Project description

image License: GPL v3 Python Repo Size PEP8 Poetry Coverage Tests Statics Doc Pypi GitHub commit activity

Scikit-transformers : Scikit-learn + Custom transformers

About

scikit-transformers is a very usefull package to enable and provide custom transformers such as LogColumnTransformer, BoolColumnTransformers and others fancy transformers.

It was created to provide a simple way to use custom transformers in scikit-learn pipelines, and allow to use them in a scikit-learn model, using GridSearchCV for testing and tuning hyperparameters.

The starting point was to provide a simple LogColumnTransformer, which is a simple wrapper around the numpy log function, making possible to use a skew threshold to apply the log transformation only on columns with a skew superior to a given threshold.

With scikit-transformers, it is now possible to use this LogColumnTransformer in transformer in a GridSearchCV using a skew threshold as hyperparameter to find what columns are good to log or not.

LogColumnTransformer is one of the many transformers implemented in scikit-transformers.

Installation

Using regular pip and venv tools :

python3 -m venv .venv
source .venv/bin/activate
pip install scikit-transformers

Usage

For a very basic usage :

import pandas as pd

from sktransf.trasnformer import LogColumnTransformer

df = pd.DataFrame(
    { "a": range(10),
      "b": range(10)
    }
)

logger = LogColumnTransformer()
logger.fit_transform(df)
df_transf = logger.transform(df)

Using common transformers :

import pandas as pd

from sktransf.transformer import LogColumnTransformer, BoolColumnTransformer
from sktransf.selector import DropUniqueColumnSelector

df = pd.DataFrame(
    { "a": range(10),
      "b": range(10)
    }
)

df_bool = BoolColumnTransformer().fit_transform(df)
df_unique = DropUniqueColumnTransformer().fit_transform(df)
df_logged = LogColumnTransformer().fit_transform(df)

Using a pipeline with a scikit-learn model :

import pandas as pd
from sklearn.pipeline import Pipeline
from sklearn.linear_model import LinearRegression

from sktransf.transformer import LogColumnTransformer, BoolColumnTransformer
from sktransf.selector import DropUniqueColumnSelector

pipe = Pipeline([
    ('bool', BoolColumnTransformer()),
    ('unique', DropUniqueColumnTransformer()),
    ('log', LogColumnTransformer()),
    ('model', LinearRegression())
])

X = pd.DataFrame(
    { "a": range(10),
      "b": range(10)
    }
)

y = range(10)

pipe.fit(X, y)

y_pred = pipe.predict(X)

Documentation

For more specific information, please refer to the notebooks:

A complete documentation is be available on the github page.

Changelog, Releases and Roadmap

Please refer to the changelog page for more information.

Contributing

Pull requests are welcome.

For major changes, please open an issue first to discuss what you would like to change.

For more information, please refer to the contributing page.

License

GPLv3

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scikit_transformers-0.3.2.tar.gz (22.7 kB view details)

Uploaded Source

Built Distribution

scikit_transformers-0.3.2-py3-none-any.whl (26.1 kB view details)

Uploaded Python 3

File details

Details for the file scikit_transformers-0.3.2.tar.gz.

File metadata

  • Download URL: scikit_transformers-0.3.2.tar.gz
  • Upload date:
  • Size: 22.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.7.0 CPython/3.11.3 Linux/6.5.0-17-generic

File hashes

Hashes for scikit_transformers-0.3.2.tar.gz
Algorithm Hash digest
SHA256 076d10a0be99c0858457172725ef0075c849e8091187c7c0cd12f2c280a8569e
MD5 9a94491c634bf915b4144baf3d03205c
BLAKE2b-256 9f63c1bbb6b9c63a4988c727fce07b87eacf4e29b20939fb1f5324d136ce57ee

See more details on using hashes here.

File details

Details for the file scikit_transformers-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for scikit_transformers-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 1805228b8d30f8e468ac4dce1c0ea8990585f8d8ad7a7db3d5724f67cc751d1a
MD5 6af6deb3400a38b75ec20b25e272b321
BLAKE2b-256 ac995b02f2bb36441679b01c268ac2445efae2e021b4ae5cb3e20fbfe018c06e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page