Skip to main content

Multi-dimensional data arrays with labeled dimensions

Project description

Multi-dimensional data arrays with labeled dimensions

A Python library enabling a modern and intuitive way of working with scientific data in Jupyter notebooks

scipp is heavily inspired by xarray. It enriches raw NumPy-like multi-dimensional arrays of data by adding named dimensions and associated coordinates. Multiple arrays can be combined into datasets. While for many applications xarray is certainly more suitable (and definitely much more matured) than scipp, there is a number of features missing in other situations. If your use case requires one or several of the items on the following list, using scipp may be worth considering:

  • Physical units are stored with each data or coord array and are handled in arithmetic operations.
  • Propagation of uncertainties.
  • Support for histograms, i.e., bin-edge axes, which are by 1 longer than the data extent.
  • Support for scattered data and non-destructive binning. This includes first and foremost event data, a particular form of sparse data with arrays of random-length lists, with very small list entries.
  • Support for masks stored with data.
  • Internals written in C++ for better performance (for certain applications), in combination with Python bindings.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scipp-23.3.0.tar.gz (170.8 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

scipp-23.3.0-cp311-cp311-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.11Windows x86-64

scipp-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

scipp-23.3.0-cp311-cp311-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

scipp-23.3.0-cp311-cp311-macosx_10_15_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

scipp-23.3.0-cp310-cp310-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.10Windows x86-64

scipp-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

scipp-23.3.0-cp310-cp310-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

scipp-23.3.0-cp310-cp310-macosx_10_15_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

scipp-23.3.0-cp39-cp39-win_amd64.whl (4.3 MB view details)

Uploaded CPython 3.9Windows x86-64

scipp-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

scipp-23.3.0-cp39-cp39-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

scipp-23.3.0-cp39-cp39-macosx_10_15_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

scipp-23.3.0-cp38-cp38-win_amd64.whl (4.2 MB view details)

Uploaded CPython 3.8Windows x86-64

scipp-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

scipp-23.3.0-cp38-cp38-macosx_11_0_arm64.whl (7.9 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

scipp-23.3.0-cp38-cp38-macosx_10_15_x86_64.whl (11.3 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

File details

Details for the file scipp-23.3.0.tar.gz.

File metadata

  • Download URL: scipp-23.3.0.tar.gz
  • Upload date:
  • Size: 170.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for scipp-23.3.0.tar.gz
Algorithm Hash digest
SHA256 15815be7899a45d5f08d658f30fc8fba076de9f97ee52db07f85d3e527effc4c
MD5 e1feb9b77190c28471349c5348ca14f4
BLAKE2b-256 a9494eea50ce2e4b295b824b136186b59049d89fe3a6128a3540e6b11385651e

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: scipp-23.3.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for scipp-23.3.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 396be5e059a26f4fbd21d7d6bc702160ec938afc3bcaad993b68f26bba3b7368
MD5 3e03fbfd07445a8aa0cbd20d526945b7
BLAKE2b-256 08217c0485d85c72a4b3fa59f3a381da05c2749cab2636954ed4025e78473082

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a4f4e5dc4682cd76af20dd843d09a5d7e6b78e9f3a25f87b6bb53c150268cabe
MD5 d8829573c6670d9712af9d4648d5d780
BLAKE2b-256 6c443cf451f6397e68f74c391cae24e7e328dc9a6a54f010c17225593322a25e

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a60dccd69d0659877bb68146816d2ff3496e580e3a732d3c007d227801fbc94b
MD5 de4ab88dde27fbb48deac7142e33fe99
BLAKE2b-256 83714a663df1c783d06c0c1a651d6225ed24f58c2a446337ce63d042e2d23e49

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 950c7be6cfbbb49680cd44b606dd8c29c7301abe76daf88a675a17f843fb3ebf
MD5 0efc10569add0b86a09e3e9ffc37c83a
BLAKE2b-256 49b23ef3f74bc38e54694b052aa3d2bcb9b6fdc2fd23d4cf0b27aa21362118f5

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: scipp-23.3.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for scipp-23.3.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 83178470144d5b4946a7d72f805fc6cfb37d4115716f3960d23195ef5ee71232
MD5 0f2d549668bae784a62f7ae2372bc986
BLAKE2b-256 09cccd8e75d6369e0a91751ee96c4f161a62f96757959b0698a88b74e722b310

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7fe3df886b74c27d16cabf829055aad1994345b3158d892499088c062cbd14c1
MD5 2067c90da91b19adf07d720939566933
BLAKE2b-256 d97149ca370c1157d30c09de047fe197fe6d623b83619990c1b92ebeddf6df7f

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 af441abc2211a3c014b7ff8598f9f2f5b8f075040a4c127f21bc0041184737e5
MD5 dc29c82020ccd2663dfc18f771406230
BLAKE2b-256 9dfabefb181afef0945b3ec9d82a1f109aa53ca44047f992a93e6abd321f094e

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 f47359fd6a69037c7d486e05845f2290a1dc4ac2a392126e9f6d51432bdc710d
MD5 00c8622e4dbb2e844043dcfbeb77cced
BLAKE2b-256 0e5ce182f01c5f93c518832e620309ef4dc850dd6e98d119cd454759b1f237b7

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: scipp-23.3.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 4.3 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for scipp-23.3.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ba43d180cd1bf48bb7bb1d339c2ef79be324e6f93e6e54351ce6f5b523813b23
MD5 3afe19e3fbb4257a9226204bec573da9
BLAKE2b-256 27cad4f3b5abd6a74fce64d4740ea9de786cdeeafc5117a6b5467eddf3b24363

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c3f4c3cc57538a6570fc3c0717eb58bf45165c13bb1de493662e36d843a09e07
MD5 325e68aed9f9f8ae6d7971bcad745e45
BLAKE2b-256 06f4e81bb8a563cf22675ad3f97a9e74f46fca109a996e3b9050c926e9628869

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a98271d98a29d8cc20f68c30a4268c73241bfda57c71f6a19af714429c681b09
MD5 198ecf705c2a395fad6907de48da9b85
BLAKE2b-256 8c54add08ee612b1fa1ded89eaf65ab412db6fdc29e2485f5f4608455b1633cb

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c9ba9667f492203f5d217ad60d08556ed48acd62122ed026743ea79034227c58
MD5 58a1ab886b184870dd44021d4b174c32
BLAKE2b-256 010821ea2cb1be811bb2f1459b0c64658762f80637fa3261cd5855a7805f1938

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: scipp-23.3.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for scipp-23.3.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 c6bb8bad590a3a28c33bb2e1d1f7e4883f2018e8075019a1dda808679af73055
MD5 ee022c4e7c16b34259f586422d9c3ebc
BLAKE2b-256 e44129858ca6017883622c8a4a5ae29f62c7f80147877cca35f71faf0721ad9b

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 340b8179f19f007d2593a0b58e0d224262676f3acd6c838dddcd56fa22687c20
MD5 ec48221666506769996f77093fbded50
BLAKE2b-256 7d77b1f4b41dd68ea7a835886589f81273221d2b952256e9fd7ff30c7886c207

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 17395986454a024b5a5d34e672138154cb19d5617a8a3a7fb1c70bde2fb18a1d
MD5 566f269b56690defdc7872fb077e6c5e
BLAKE2b-256 5871485261e676768e509e0f0b94615b2b410fe8555a4f04ca320d12b2045d1a

See more details on using hashes here.

File details

Details for the file scipp-23.3.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for scipp-23.3.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 0c77a70e1193533e2850dc08e62ba5cdc9df4468918fe59f669790221699ec1b
MD5 c3095bc76db606b9ce03ec79fbd14589
BLAKE2b-256 b3fb7d016808063a215648b615a7910f4b9ee1db34d580bb5b840e961dac89ba

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page