Provides OpenBLAS for python packaging
Project description
OpenBLAS
We build OpenBLAS on Travis-CI (for linux aarch64, ppc64, s390x) and github actions for linux, windows, macOS x86_64 and macOS arm64.
Tarballs are at https://anaconda.org/scientific-python-nightly-wheels/openblas-libs/files
A project using the tarball, for Manylinux or macOS, will need the
gfortran-install
submodule used here, from
https://github.com/MacPython/gfortran-install
We also build and upload a pip-installable wheel. The wheel is self-contained,
it includes all needed gfortran support libraries. On windows, this is a single
DLL. On linux we use auditwheel repair
to mangle the shared object names.
The wheel supplies interfaces for building and using OpenBLAS in a python project like SciPy or NumPy:
Buildtime
get_include_dir()
,get_lib_dir()
andget_library()
for use in compiler or project argumentsget_pkg_config()
will return a multi-line text that can be saved into a file and used with pkg-config for build systems like meson. This works around the problem of relocatable pkg-config files since the windows build uses pkgconfiglite v0.28 which does not support--define-prefix
.
Runtime
- importing will load openblas into the executable and provide the openblas symbols.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for scipy_openblas64-0.3.26.0-py3-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | cfb65cf3dc70aef96c186e9ffc56c1123e62d254a6eadc80902e50001f20cb69 |
|
MD5 | 0fdba8eca624bc51272505864a704930 |
|
BLAKE2b-256 | 6a283bcd5ad9446f34976049575d002880333439b5443c137fa6b071f1dca6a7 |
Hashes for scipy_openblas64-0.3.26.0-py3-none-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 37fe4be053358898f43ffc21222138ae24c8ee409cc9f35e65581d718c0d94ee |
|
MD5 | 4c7fc3da71555110ecf8729fc3acadd7 |
|
BLAKE2b-256 | 81edcd9ab5bf4416e8bf6cd9bb250dcce15825885e786130413245ef628a8a4f |
Hashes for scipy_openblas64-0.3.26.0-py3-none-musllinux_1_1_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3f98d39ebc313ebdd4ca2425b557d01344e0f9d7d88f150680d4da2b65b5e217 |
|
MD5 | 1fe8bd709d74287c447d1c635759ee20 |
|
BLAKE2b-256 | 8ad1dd0093c196f769deed7aad591071ceeb7d19e49bb4c01b2561c3648df1be |
Hashes for scipy_openblas64-0.3.26.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 253ac7dca7309555b051e381be2467e487d182ee5595b28ddb2c3c786957b360 |
|
MD5 | e6e418c3fc008bc5c1873c435b8cd2dc |
|
BLAKE2b-256 | 462d10fcce0a015414b77beeff63cf1d0bede790ab30666e5b5659df8d1c5cc9 |
Hashes for scipy_openblas64-0.3.26.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f022d9282fa5c3d0ccc26951e2211269020b7bbc1ea0711a5be54f745d5cbb33 |
|
MD5 | 582827a328a78d9bff37e1494e6fec94 |
|
BLAKE2b-256 | 0bbceb58950095bc057333585db6d34b15a2f49f28b600ad0bdf932522b8408d |
Hashes for scipy_openblas64-0.3.26.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0f449902d36a798d2ed41634f4c228398d322ccf8eb21342da3a3503f3ba4999 |
|
MD5 | ae328654813dbd91331d472ef9d44967 |
|
BLAKE2b-256 | b879141e9794f93442c47d411769bf4e930487a8c7fb553251ad1e11164f8bfd |
Hashes for scipy_openblas64-0.3.26.0-py3-none-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e8686906552b2de3fe0d80d6551fd70d286f2d44d7d7265b652fe4581206078f |
|
MD5 | d575c9fd31f9031334e95af5bd2f1c6e |
|
BLAKE2b-256 | 734bfe2b456cf3b3c66274d62c90830dbb66eca85bd282a2a17c88fe56097f44 |
Hashes for scipy_openblas64-0.3.26.0-py3-none-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e3ec2c7286c43360c4adee0da0e1d0f35e54de23032c057c38f573e536f163d8 |
|
MD5 | 5202dde202e622cb4e6795d28176a34b |
|
BLAKE2b-256 | 8b0a5f0f5e46825d6bf91ed1ed0e1bd2d4cefd689d8461e1eb7f9268b21ae3e0 |