Provides OpenBLAS for python packaging
Project description
OpenBLAS
We build OpenBLAS on Travis-CI (for linux aarch64, ppc64, s390x) and github actions for linux, windows, macOS x86_64 and macOS arm64.
Tarballs are at https://anaconda.org/scientific-python-nightly-wheels/openblas-libs/files
A project using the tarball, for Manylinux or macOS, will need the
gfortran-install
submodule used here, from
https://github.com/MacPython/gfortran-install
We also build and upload a pip-installable wheel. The wheel is self-contained,
it includes all needed gfortran support libraries. On windows, this is a single
DLL. On linux we use auditwheel repair
to mangle the shared object names.
The wheel supplies interfaces for building and using OpenBLAS in a python project like SciPy or NumPy:
Buildtime
get_include_dir()
,get_lib_dir()
andget_library()
for use in compiler or project argumentsget_pkg_config()
will return a multi-line text that can be saved into a file and used with pkg-config for build systems like meson. This works around the problem of relocatable pkg-config files since the windows build uses pkgconfiglite v0.28 which does not support--define-prefix
.
Runtime
- importing will load openblas into the executable and provide the openblas symbols.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d58232ab9120e846afc901587ce4d5668b15c21d1e65f683f5521fa4e38e55cd |
|
MD5 | 9b94ff6a80e0209a7a51020ead311af4 |
|
BLAKE2b-256 | 4ea13194de267145c296299d99fad678789d3bea06219b95b7e3c809335f673b |
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b35ad59a9a129a5024d6c476952f5ab4cfe019d132ef1f996baac9fe19e18842 |
|
MD5 | 641c482aa5600275bd03209353d6699a |
|
BLAKE2b-256 | 2e8314b75465ecb4d4a24dd6585137dc8548c69692235be2c526e42fabfb2496 |
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-musllinux_1_1_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | dde58d905ade6a6482d013b630fb9da517b2899eea0382f72d9fdff5d58b72fc |
|
MD5 | 3a67dd94a9ee7b3aa4cef0c75b5f607a |
|
BLAKE2b-256 | 48ff76c4f8fb78b2308aabe9630e56aeff41fefb5dedad96545e145dec1a5503 |
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fcfd01cbe0659d851c4d0c260abd016e097d7a2759c409114587a5b4b86c9bb7 |
|
MD5 | ca601e87db7cb823ea783a3c8e5aab80 |
|
BLAKE2b-256 | c14ab718f948bd101f584370b9100d6439662e20470eee5e0467958d059dd9bd |
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d0ef33974234c3d70fecb49de5dbe38483c15ac7680b6c85c9cd4edee542857 |
|
MD5 | f262c8214e0fe55ab3e78bd441d0d30f |
|
BLAKE2b-256 | a257aa3f621bcc912d547aa9cef94bc7b3b5298e70844327aeb7be4700195c7b |
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fdde82fec5238ba53de61c9a8fc999c9591d1c8836a285a51c5ef08cfc6bf586 |
|
MD5 | e40cf2a096b72a9db71a7ccf8736078b |
|
BLAKE2b-256 | 10edb3c4843cf8db5f09475ea618c5217fdba625b3a9890038478cba6ec7e56a |
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9a60c3deb763c400ffb9f211dcb0d1e083a830274a66f5a781f4a79c8b4ac24c |
|
MD5 | ceeb3132b917129761f0e85923fbcba4 |
|
BLAKE2b-256 | c0c8ac4a990351521eaec513dbfd8619dec19a0637c32c633005b0ac06a74bb0 |
Hashes for scipy_openblas64-0.3.27.0.0-py3-none-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5de28878ede4cbb544a98d7f05647d44d42dc877685b9295b077b8fc4f3fbc98 |
|
MD5 | 1e920f1581c016f1a4afac7e196f772b |
|
BLAKE2b-256 | 3acf4e7c684236a1c0b9228d54ba932e396e9debe55787635ad2bf6d44faa4b3 |