Provides OpenBLAS for python packaging
Project description
OpenBLAS
We build OpenBLAS on Travis-CI (for linux aarch64, ppc64, s390x) and github actions for linux, windows, macOS x86_64 and macOS arm64.
Tarballs are at https://anaconda.org/scientific-python-nightly-wheels/openblas-libs/files
A project using the tarball, for Manylinux or macOS, will need the
gfortran-install
submodule used here, from
https://github.com/MacPython/gfortran-install
We also build and upload a pip-installable wheel. The wheel is self-contained,
it includes all needed gfortran support libraries. On windows, this is a single
DLL. On linux we use auditwheel repair
to mangle the shared object names.
The wheel supplies interfaces for building and using OpenBLAS in a python project like SciPy or NumPy:
Buildtime
get_include_dir()
,get_lib_dir()
andget_library()
for use in compiler or project argumentsget_pkg_config()
will return a multi-line text that can be saved into a file and used with pkg-config for build systems like meson. This works around the problem of relocatable pkg-config files since the windows build uses pkgconfiglite v0.28 which does not support--define-prefix
.
Runtime
- importing will load openblas into the executable and provide the openblas symbols.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for scipy_openblas64-0.3.27.44.4-py3-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 69bcd32da0fc0ea68670a99fe7d71b44fcfb7c3fa7179d2887d8f60d238f9bf7 |
|
MD5 | ce84b0cbf6c80acf684a331d8f8fc916 |
|
BLAKE2b-256 | 523ce87b9f85eb0bf4e0c2b5b5263af294ee2ffa86852f06d21dc4d428feaeff |
Hashes for scipy_openblas64-0.3.27.44.4-py3-none-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2bd230399ffb45ffe0dec86cb07c47714ef4e357b2487107936f4a8eef7c3305 |
|
MD5 | a322e1d4d217b15d1d2bc67eae0a164d |
|
BLAKE2b-256 | da920a8de8e5f1e40c958eef00ae0fb6ec2882a55f67cecd1652c80c22b9875d |
Hashes for scipy_openblas64-0.3.27.44.4-py3-none-musllinux_1_1_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e5dc7ea6d40538bcad151eebbba22ab20cf13729913d5a114cf191b0b5f2704e |
|
MD5 | 1c69182a9aa7cc2108a3c14e662ab20a |
|
BLAKE2b-256 | 41baa71af86478b38335a13a13788d74f3703aeca480b01ee13a6659ab43d6da |
Hashes for scipy_openblas64-0.3.27.44.4-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9377609dd95609c6dfc3bc87a12d97d21301640960753a295df9fc769171705c |
|
MD5 | fbaf1e000a1f6e96878cf5403f629c70 |
|
BLAKE2b-256 | b4a176b522f5a671198a54480b72932078b1a8def7a334f7719d72d92e4e6954 |
Hashes for scipy_openblas64-0.3.27.44.4-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b0a9be8ae601bd5c89d4c3e3a68f96d70209451103d0d319b0bb6cba7e0679de |
|
MD5 | aace0f09746961c83397c0dae97cd10c |
|
BLAKE2b-256 | 0afb7cb8dcddd48d0e811459f28800bb5147c65698c7285eb3340dc8395fd286 |
Hashes for scipy_openblas64-0.3.27.44.4-py3-none-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5a1e7789dbfd3d56f76a11813e122759a79e9221d862016755e5b0c51e0cc378 |
|
MD5 | 23659e582d80bf4685ec11e519784412 |
|
BLAKE2b-256 | 00e53f1a7888e4031586cc42f1595d97a139e9a06b0b3bc5650876bb56adad90 |
Hashes for scipy_openblas64-0.3.27.44.4-py3-none-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d4fbbecb70553c451608dae6ae8331b4b2618d902cb9ca1a873785a7452fa241 |
|
MD5 | f60136feef0e03b147967b855e96d074 |
|
BLAKE2b-256 | 6a806f2d747b7f788a92ceed285ea78b43c945c89d223b90208587d8e099b55d |