Provides OpenBLAS for python packaging
Project description
OpenBLAS
We build OpenBLAS on Travis-CI (for linux aarch64, ppc64, s390x) and github actions for linux, windows, macOS x86_64 and macOS arm64.
Tarballs are at https://anaconda.org/scientific-python-nightly-wheels/openblas-libs/files
A project using the tarball, for Manylinux or macOS, will need the
gfortran-install
submodule used here, from
https://github.com/MacPython/gfortran-install
We also build and upload a pip-installable wheel. The wheel is self-contained,
it includes all needed gfortran support libraries. On windows, this is a single
DLL. On linux we use auditwheel repair
to mangle the shared object names.
The wheel supplies interfaces for building and using OpenBLAS in a python project like SciPy or NumPy:
Buildtime
get_include_dir()
,get_lib_dir()
andget_library()
for use in compiler or project argumentsget_pkg_config()
will return a multi-line text that can be saved into a file and used with pkg-config for build systems like meson. This works around the problem of relocatable pkg-config files since the windows build uses pkgconfiglite v0.28 which does not support--define-prefix
.
Runtime
- importing will load openblas into the executable and provide the openblas symbols.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distributions
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | e91f2e4196554067e5548f6784dace88d29b6ead41fb627687e9c23fed685d03 |
|
MD5 | 54208a8ee68ac04d36135ea838e7c048 |
|
BLAKE2b-256 | 04caac8063a03907ae2abffcce3137da836daee2b549ee299d62335d95566f73 |
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-musllinux_1_1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 80315847b1cd93474931c2cd2c43da5db559d6ddd123c0c3ea0fc7959914e34c |
|
MD5 | 7b76506c52e6d633947b17860e1288c8 |
|
BLAKE2b-256 | b111c4742efc0806d1a5037b440258171c77dfecad0545748fb1e1452c5765ab |
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-musllinux_1_1_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | d575292ccf9f09dc75b13a78d0549192a510067bdcbed3fd7829cb5a07b2ed0f |
|
MD5 | 8342ae3477e974985afeb5cda1903911 |
|
BLAKE2b-256 | 64131e50d72732d8b5ae0f9330d45fed02f1f4703c3d906f11e845548065bd4b |
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | fe7591e32ef7ea28d4a36bfbe9a73d6020295e5d67900e5a5b470730544d2d4d |
|
MD5 | 8a973db7afb202ec199003d5ed2148f4 |
|
BLAKE2b-256 | da9f79ddbdbd46be73d010876742fd5191daf90384e036aae02ad046b7bc1de6 |
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b55023cb054934e6210ce5e48fa34f27d8465d0f6e29c771e2e1314d00801aa |
|
MD5 | f0751a6fa3aaf6cd5b292b0df2227318 |
|
BLAKE2b-256 | 08a4c4bc73e30128cf22dcff8238fb7f1900e92480ab2f7c1710f27fd4d1cd18 |
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5ea6e0a3d009d9c4c9158f80ce6f37e9e8decf9407b140b947f4fdd9df8012b3 |
|
MD5 | a397079cc1f72b949d175854675693af |
|
BLAKE2b-256 | 9d2d958188c3305775ce465f1dc969c861f7e7d96c4272bd13132bba2cd6f41d |
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-macosx_11_0_arm64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 28ea55e905c6eb3e5170706cceeabfcfe78ff84f3f5b1917b84d2e3e696418a3 |
|
MD5 | 7fdb9fcbd32e98197a8d0fc13869d4d2 |
|
BLAKE2b-256 | 36dda3766e721a9edf6938fe23e6f27e7453f30f58f16f0186ee34d020ce2dc4 |
Hashes for scipy_openblas64-0.3.27.63.0-py3-none-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 22b4fa58308eaa6931b72cdd4246850e6645cc62f5d7deb6512c7b6140bb863f |
|
MD5 | 2f6366cadd26420b406fbc400f2b2f5c |
|
BLAKE2b-256 | d1e6bf1485064b989f543454bcc7f5ca0b5611c4b64755c3a45a92db7029c7ef |