Skip to main content

Module to create Matrix and use Matrix Functions.

Project description

Matrix

This is a Module which can perform Matrix Functions.


Table of Contents

You're sections headers will be used to reference location of destination.


Description

Matrix can be Created using 2D Arrays (Lists in Python), but Complex Functions like Determinant(N X N), Inverse, Matrix Arithmetic Operations ... is Required. I hope this Module can save your time and effort as well as provide you with some consistency across your Matrix Journey.

Back To The Top


Functions-Methods

Methods List

init(self,r,c)

This method of the Class will initialize the class by creating a matrix A(r,c). And will create the matrix. All elements will be 0.

obj=Matrix(3,3)

list(self)

This method of the Class will return the 2-D list.

lst99 = obj.list()

inputAdd(self)

This Method of the Class will change the elements of the Matrix by User Input.

obj.inputAdd()

listTomatrix(self, lst:list)

This method of the Class converts the List Parameter to Matrix (self.matrix).

obj.listTomatrix([1,2,3,4,5,6,7,8,9])

printMatrix(self)

This Method prints the Matrix using Tabulate Module.

obj.printMatrix()

transpose(self)

This Method Returns a Transpose of the Matrix (self.matrix).

Return Type -> Matrix

obj2 = obj.transpose()

sizeMatrix(self)

This Method returns the Dimensions of the Matrix.

Return Type -> Tuple

tuple1 = obj.sizeMatrix()

matrixMultiplicationConstant(self, int1 : int OR float)

This Method multiplies the Original Matrix with the Constant (int1).

A = A * c

obj.matrixMultiplicationConstant(5)

adj(self)

This Method returns the Adjoint of the Original Matrix.

Return Type - Matrix

obj5 = obj.adj()

inverse(self)

This Method returns the Inverse of the Original Matrix.

Return Type -> Matrix

obj6 = obj.inverse()

mean(self)

This Method returns the mean of the Original Matrix.

Return Type -> Float

float1 = obj.mean()

rowMeans(self)

This Method returns the mean of all rows of the Original Matrix.

Return Type -> Matrix

obj7 = obj.rowMeans()

colMeans(self)

This Method returns the mean of all columns of the Original Matrix.

Return Type -> Matrix

obj8 = obj.colMeans()

rowSum(self)

This Method returns the sum of all rows of the Original Matrix.

Return Type -> Matrix

obj9 = obj.colMeans()

colSum(self)

This Method returns the sum of all columns of the Original Matrix.

Return Type -> Matrix

obj10 = obj.colSum()

sum(self)

This Method returns the sum of all elements of the Matrix.

Return Type -> Float/Int

var = obj.sum()

orthogonalCheck(self)

This Method returns 1, if the Matrix is orthogonal and 0 if it is not.

Return Type -> Int

var = obj.orthogonalCheck()

trace(self)

This Method returns the sum of all diagonal elements of the Matrix.

Return Type -> Int/Float

var2 = obj.trace()

flatten(self)

This Method returns 1D list containing all elements, Row-Wise.

Return Type -> List

var2 = obj.flatten()

Functions List

matDiv(m1:Matrix, m2:Matrix)

This Method returns the Result of the Multiplication of 2 Matrices. Both Matrices are the Parameter Matrices, First is the Numerator Matrix and other is the Denominator Matrix (for which the inverse is calculated).

Return Type -> Matrix

C = A * B^-1

obj11 = obj.matDiv(obj, obj2)

matMul(m1:Matrix, m2:Matrix)

This method returns the Result of the Multiplication of 2 Matrices.

Return Type -> Matrix

C = A x B

obj3 = matMul(obj1, obj2)

matSum(m1:Matrix, m2:Matrix)

This Method returns the Result of the Addition of 2 Matrices. Return Type -> Matrix

C = A + B

obj4 = matSum(obj, obj2)

matSub(m1:Matrix, m2:Matrix)

This Method returns the Result of the Subtraction of 2 Matrices.

Return Type -> Matrix

C = A - B

obj4 = matSub(obj, obj2)

diag(m1 : Matrix OR List)

This Function returns the Diagonal Matrix if the parameter is a List, And Returns the List of all the Diagonal Elements of the Matrix if the parameter is a Matrix.

Return Type -> Matrix/List

list1 = diag(obj) OR obj12 = diag([1,2,3,4,5,6])

identity(m1:Matrix)

This Function returns an Identity Matrix.

obj13 = identity(obj)

determinant(m1:Matrix)

This Function returns the Deteminant of a Matrix (N x N).

Return Type -> Float/Int

det12 = determinant(obj)

Back To The Top


Author Info

Back To The Top

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scitrix-0.1.3.tar.gz (5.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

scitrix-0.1.3-py3-none-any.whl (6.2 kB view details)

Uploaded Python 3

File details

Details for the file scitrix-0.1.3.tar.gz.

File metadata

  • Download URL: scitrix-0.1.3.tar.gz
  • Upload date:
  • Size: 5.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.3

File hashes

Hashes for scitrix-0.1.3.tar.gz
Algorithm Hash digest
SHA256 a5f54e06b635e48b0b0a5984e5b5812175d864ad065a24fea0d7567fdacf4603
MD5 512587a27bff0ef641852b59bd1e394a
BLAKE2b-256 bf43cfdba31999a98063fddc4170660d4a77e682fa1b9f8d1302b7182a5c3aff

See more details on using hashes here.

File details

Details for the file scitrix-0.1.3-py3-none-any.whl.

File metadata

  • Download URL: scitrix-0.1.3-py3-none-any.whl
  • Upload date:
  • Size: 6.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.7.3

File hashes

Hashes for scitrix-0.1.3-py3-none-any.whl
Algorithm Hash digest
SHA256 a24d54c868385487bb1c256c3c606146361bddf67ed96b977037b8ef0d30abec
MD5 2cf2efb1553f081763bfc008b458d0b6
BLAKE2b-256 e582bd6cc581959694243b861c04eab70c0d457a1320e39f1f6d584009e9cb5b

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page