Module to create Matrix and use Matrix Functions.
Project description
Matrix
This is a Module which can perform Matrix Functions.
Table of Contents
You're sections headers will be used to reference location of destination.
Description
Matrix can be Created using 2D Arrays (Lists in Python), but Complex Functions like Determinant(N X N), Inverse, Matrix Arithmetic Operations ... is Required. I hope this Module can save your time and effort as well as provide you with some consistency across your Matrix Journey.
Functions-Methods
Methods List
init(self,r,c)
This method of the Class will initialize the class by creating a matrix A(r,c). And will create the matrix. All elements will be 0.
obj=Matrix(3,3)
list(self)
This method of the Class will return the 2-D list.
lst99 = obj.list()
inputAdd(self)
This Method of the Class will change the elements of the Matrix by User Input.
obj.inputAdd()
listTomatrix(self, lst:list)
This method of the Class converts the List Parameter to Matrix (self.matrix).
obj.listTomatrix([1,2,3,4,5,6,7,8,9])
printMatrix(self)
This Method prints the Matrix using Tabulate Module.
obj.printMatrix()
transpose(self)
This Method Returns a Transpose of the Matrix (self.matrix).
Return Type -> Matrix
obj2 = obj.transpose()
sizeMatrix(self)
This Method returns the Dimensions of the Matrix.
Return Type -> Tuple
tuple1 = obj.sizeMatrix()
matrixMultiplicationConstant(self, int1 : int OR float)
This Method multiplies the Original Matrix with the Constant (int1).
A = A * c
obj.matrixMultiplicationConstant(5)
adj(self)
This Method returns the Adjoint of the Original Matrix.
Return Type - Matrix
obj5 = obj.adj()
inverse(self)
This Method returns the Inverse of the Original Matrix.
Return Type -> Matrix
obj6 = obj.inverse()
mean(self)
This Method returns the mean of the Original Matrix.
Return Type -> Float
float1 = obj.mean()
rowMeans(self)
This Method returns the mean of all rows of the Original Matrix.
Return Type -> Matrix
obj7 = obj.rowMeans()
colMeans(self)
This Method returns the mean of all columns of the Original Matrix.
Return Type -> Matrix
obj8 = obj.colMeans()
rowSum(self)
This Method returns the sum of all rows of the Original Matrix.
Return Type -> Matrix
obj9 = obj.colMeans()
colSum(self)
This Method returns the sum of all columns of the Original Matrix.
Return Type -> Matrix
obj10 = obj.colSum()
sum(self)
This Method returns the sum of all elements of the Matrix.
Return Type -> Float/Int
var = obj.sum()
orthogonalCheck(self)
This Method returns 1, if the Matrix is orthogonal and 0 if it is not.
Return Type -> Int
var = obj.orthogonalCheck()
trace(self)
This Method returns the sum of all diagonal elements of the Matrix.
Return Type -> Int/Float
var2 = obj.trace()
flatten(self)
This Method returns 1D list containing all elements, Row-Wise.
Return Type -> List
var2 = obj.flatten()
Functions List
matDiv(m1:Matrix, m2:Matrix)
This Method returns the Result of the Multiplication of 2 Matrices. Both Matrices are the Parameter Matrices, First is the Numerator Matrix and other is the Denominator Matrix (for which the inverse is calculated).
Return Type -> Matrix
C = A * B^-1
obj11 = obj.matDiv(obj, obj2)
matMul(m1:Matrix, m2:Matrix)
This method returns the Result of the Multiplication of 2 Matrices.
Return Type -> Matrix
C = A x B
obj3 = matMul(obj1, obj2)
matSum(m1:Matrix, m2:Matrix)
This Method returns the Result of the Addition of 2 Matrices. Return Type -> Matrix
C = A + B
obj4 = matSum(obj, obj2)
matSub(m1:Matrix, m2:Matrix)
This Method returns the Result of the Subtraction of 2 Matrices.
Return Type -> Matrix
C = A - B
obj4 = matSub(obj, obj2)
diag(m1 : Matrix OR List)
This Function returns the Diagonal Matrix if the parameter is a List, And Returns the List of all the Diagonal Elements of the Matrix if the parameter is a Matrix.
Return Type -> Matrix/List
list1 = diag(obj) OR obj12 = diag([1,2,3,4,5,6])
identity(m1:Matrix)
This Function returns an Identity Matrix.
obj13 = identity(obj)
determinant(m1:Matrix)
This Function returns the Deteminant of a Matrix (N x N).
Return Type -> Float/Int
det12 = determinant(obj)
Author Info
- Instagram - prak_entech983
- Youtube - Prak EnTech
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Filter files by name, interpreter, ABI, and platform.
If you're not sure about the file name format, learn more about wheel file names.
Copy a direct link to the current filters
File details
Details for the file scitrix-0.1.3.tar.gz.
File metadata
- Download URL: scitrix-0.1.3.tar.gz
- Upload date:
- Size: 5.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a5f54e06b635e48b0b0a5984e5b5812175d864ad065a24fea0d7567fdacf4603
|
|
| MD5 |
512587a27bff0ef641852b59bd1e394a
|
|
| BLAKE2b-256 |
bf43cfdba31999a98063fddc4170660d4a77e682fa1b9f8d1302b7182a5c3aff
|
File details
Details for the file scitrix-0.1.3-py3-none-any.whl.
File metadata
- Download URL: scitrix-0.1.3-py3-none-any.whl
- Upload date:
- Size: 6.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.7.3
File hashes
| Algorithm | Hash digest | |
|---|---|---|
| SHA256 |
a24d54c868385487bb1c256c3c606146361bddf67ed96b977037b8ef0d30abec
|
|
| MD5 |
2cf2efb1553f081763bfc008b458d0b6
|
|
| BLAKE2b-256 |
e582bd6cc581959694243b861c04eab70c0d457a1320e39f1f6d584009e9cb5b
|