Skip to main content

scprep

Project description

Latest PyPi version Travis CI Build Read the Docs Coverage Status Twitter GitHub stars

Tools for loading and preprocessing biological matrices in Python.

Installation

preprocessing is available on pip. Install by running the following in a terminal:

pip install --user scprep

Usage example

You can use scprep with your single cell data as follows:

import scprep
# Load data
data_path = "~/mydata/my_10X_data"
data = scprep.io.load_10X(data_path)
# Remove empty columns and rows
data = scprep.filter.remove_empty_cells(data)
data = scprep.filter.remove_empty_genes(data)
# Filter by library size to remove background
scprep.plot.plot_library_size(data, cutoff=500)
data = scprep.filter.filter_library_size(data, cutoff=500)
# Filter by mitochondrial expression to remove dead cells
mt_genes = scprep.utils.get_gene_set(data, starts_with="MT")
scprep.plot.plot_gene_set_expression(data, mt_genes, percentile=90)
data = scprep.filter.filter_gene_set_expression(data, mt_genes,
                                                percentile=90)
# Library size normalize
data = scprep.normalize.library_size_normalize(data)
# Square root transform
data = scprep.transform.sqrt(data)

Help

If you have any questions or require assistance using scprep, please read the documentation at https://scprep.readthedocs.io/ or contact us at https://krishnaswamylab.org/get-help

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
scprep-0.7.1.tar.gz (27.3 kB) Copy SHA256 hash SHA256 Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page