Skip to main content

A web scraping library based on LangChain which uses LLM and direct graph logic to create scraping pipelines.

Project description

🕷️ ScrapeGraphAI: You Only Scrape Once

English | 中文 | 日本語 | 한국어 | Русский | Türkçe

Downloads linting: pylint Pylint CodeQL License: MIT

VinciGit00%2FScrapegraph-ai | Trendshift

ScrapeGraphAI is a web scraping python library that uses LLM and direct graph logic to create scraping pipelines for websites and local documents (XML, HTML, JSON, Markdown, etc.).

Just say which information you want to extract and the library will do it for you!

ScrapeGraphAI Hero

🚀 Quick install

The reference page for Scrapegraph-ai is available on the official page of PyPI: pypi.

pip install scrapegraphai

# IMPORTANT (for fetching websites content)
playwright install

Note: it is recommended to install the library in a virtual environment to avoid conflicts with other libraries 🐱

💻 Usage

There are multiple standard scraping pipelines that can be used to extract information from a website (or local file).

The most common one is the SmartScraperGraph, which extracts information from a single page given a user prompt and a source URL.

from scrapegraphai.graphs import SmartScraperGraph

# Define the configuration for the scraping pipeline
graph_config = {
    "llm": {
        "api_key": "YOUR_OPENAI_API_KEY",
        "model": "openai/gpt-4o-mini",
    },
    "verbose": True,
    "headless": False,
}

# Create the SmartScraperGraph instance
smart_scraper_graph = SmartScraperGraph(
    prompt="Extract useful information from the webpage, including a description of what the company does, founders and social media links",
    source="https://scrapegraphai.com/",
    config=graph_config
)

# Run the pipeline
result = smart_scraper_graph.run()

import json
print(json.dumps(result, indent=4))

The output will be a dictionary like the following:

{
    "description": "ScrapeGraphAI transforms websites into clean, organized data for AI agents and data analytics. It offers an AI-powered API for effortless and cost-effective data extraction.",
    "founders": [
        {
            "name": "Marco Perini",
            "role": "Founder & Technical Lead",
            "linkedin": "https://www.linkedin.com/in/perinim/"
        },
        {
            "name": "Marco Vinciguerra",
            "role": "Founder & Software Engineer",
            "linkedin": "https://www.linkedin.com/in/marco-vinciguerra-7ba365242/"
        },
        {
            "name": "Lorenzo Padoan",
            "role": "Founder & Product Engineer",
            "linkedin": "https://www.linkedin.com/in/lorenzo-padoan-4521a2154/"
        }
    ],
    "social_media_links": {
        "linkedin": "https://www.linkedin.com/company/101881123",
        "twitter": "https://x.com/scrapegraphai",
        "github": "https://github.com/ScrapeGraphAI/Scrapegraph-ai"
    }
}

There are other pipelines that can be used to extract information from multiple pages, generate Python scripts, or even generate audio files.

Pipeline Name Description
SmartScraperGraph Single-page scraper that only needs a user prompt and an input source.
SearchGraph Multi-page scraper that extracts information from the top n search results of a search engine.
SpeechGraph Single-page scraper that extracts information from a website and generates an audio file.
ScriptCreatorGraph Single-page scraper that extracts information from a website and generates a Python script.
SmartScraperMultiGraph Multi-page scraper that extracts information from multiple pages given a single prompt and a list of sources.
ScriptCreatorMultiGraph Multi-page scraper that generates a Python script for extracting information from multiple pages and sources.

For each of these graphs there is the multi version. It allows to make calls of the LLM in parallel.

It is possible to use different LLM through APIs, such as OpenAI, Groq, Azure and Gemini, or local models using Ollama.

Remember to have Ollama installed and download the models using the ollama pull command, if you want to use local models.

📖 Documentation

Open In Colab

The documentation for ScrapeGraphAI can be found here. Check out also the Docusaurus here.

🔗 ScrapeGraph API & SDKs

If you are looking for a quick solution to integrate ScrapeGraph in your system, check out our powerful API here!

ScrapeGraph API Banner

We offer SDKs in both Python and Node.js, making it easy to integrate into your projects. Check them out below:

SDK Language GitHub Link
Python SDK Python scrapegraph-py
Node.js SDK Node.js scrapegraph-js

The Official API Documentation can be found here.

🏆 Sponsors

🤝 Contributing

Feel free to contribute and join our Discord server to discuss with us improvements and give us suggestions!

Please see the contributing guidelines.

My Skills My Skills My Skills

📈 Telemetry

We collect anonymous usage metrics to enhance our package's quality and user experience. The data helps us prioritize improvements and ensure compatibility. If you wish to opt-out, set the environment variable SCRAPEGRAPHAI_TELEMETRY_ENABLED=false. For more information, please refer to the documentation here.

❤️ Contributors

Contributors

🎓 Citations

If you have used our library for research purposes please quote us with the following reference:

  @misc{scrapegraph-ai,
    author = {Marco Perini, Lorenzo Padoan, Marco Vinciguerra},
    title = {Scrapegraph-ai},
    year = {2024},
    url = {https://github.com/VinciGit00/Scrapegraph-ai},
    note = {A Python library for scraping leveraging large language models}
  }

Authors

Authors_logos

Contact Info
Marco Vinciguerra Linkedin Badge
Marco Perini Linkedin Badge
Lorenzo Padoan Linkedin Badge

📜 License

ScrapeGraphAI is licensed under the MIT License. See the LICENSE file for more information.

Acknowledgements

  • We would like to thank all the contributors to the project and the open-source community for their support.
  • ScrapeGraphAI is meant to be used for data exploration and research purposes only. We are not responsible for any misuse of the library.

Made with ❤️ by ScrapeGraph AI

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scrapegraphai-1.36.0.tar.gz (4.0 MB view details)

Uploaded Source

Built Distribution

scrapegraphai-1.36.0-py3-none-any.whl (172.9 kB view details)

Uploaded Python 3

File details

Details for the file scrapegraphai-1.36.0.tar.gz.

File metadata

  • Download URL: scrapegraphai-1.36.0.tar.gz
  • Upload date:
  • Size: 4.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for scrapegraphai-1.36.0.tar.gz
Algorithm Hash digest
SHA256 386aac7862e63088a806d4c9563aee2db593d816ccdc2e133056babdcc0dd9ad
MD5 65fdb139b0204d0b703dce6447cad3fd
BLAKE2b-256 545a2d3cf85e523864dd8daf767ef24534668fac22e3a5bda0a5d08aa42026e6

See more details on using hashes here.

File details

Details for the file scrapegraphai-1.36.0-py3-none-any.whl.

File metadata

File hashes

Hashes for scrapegraphai-1.36.0-py3-none-any.whl
Algorithm Hash digest
SHA256 ac6ac8e7fa804053a091c157edb937819ce781b298b11c951ea2e429dd8ee94f
MD5 5f95a60f8d5d2bb8c7ef16baf931dd63
BLAKE2b-256 11d79c8ada5bc23c79fbf0612effd99ed532309b8011fb7c9f234962034f88ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page