Skip to main content

Single-cell Variational Inference

Project description

scVI - Single cell Variational Inference

Stars PyPI BioConda Documentation Status Build Status Coverage Code Style Downloads

scVI is a package for end-to-end analysis of single-cell omics data. The package is composed of several deep generative models for omics data analysis, namely:

  • scVI for analysis of single-cell RNA-seq data, as well as its improved differential expression framework

  • scANVI for cell annotation of scRNA-seq data using semi-labeled examples

  • totalVI for analysis of CITE-seq data

  • gimVI for imputation of missing genes in spatial transcriptomics from scRNA-seq data

  • AutoZI for assessing gene-specific levels of zero-inflation in scRNA-seq data

  • LDVAE for an interpretable linear factor model version of scVI

Tutorials and API reference are available in the documentation. Please use the issues here to discuss usage, or submit bug reports. If you’d like to contribute, please check out our contributing guide. If you find a model useful for your research, please consider citing the corresponding publication (linked above).

History

0.6.3 (2020-4-01)

  • bug in version for Louvian in setup.py @adam

0.6.2 (2020-4-01)

  • update highly variable gene selection to handle sparse matrices @adam

  • update DE docstrings @pierre

  • improve posterior save load to also handle subclasses @pierre

  • Create NB and ZINB distributions with torch and refactor code accordingly @pierre

  • typos in autozivae @achille

  • bug in csc sparse matrices in anndata data loader @adam

0.6.1 (2020-3-13)

  • handles gene and cell attributes with the same name @han-yuan

  • fixes anndata overwriting when loading @adam, @pierre

  • formatting in basic tutorial @adam

0.6.0 (2020-2-28)

0.5.0 (2019-10-17)

0.4.1 (2019-08-03)

0.4.0 (2019-07-25)

  • gimVI @achille

  • synthetic correlated datasets, fixed bug in marginal log likelihood @oscar

  • autotune, dataset enhancements @gabriel

  • documentation @jeff

  • more consistent posterior API, docstring, validation set @adam

  • fix anndataset @michael-raevsky

  • linearly decoded VAE @valentine-svensson

  • support for scanpy, fixed bugs, dataset enhancements @achille

  • fix filtering bug, synthetic correlated datasets, docstring, differential expression @pierre

  • better docstring @jamie-morton

  • classifier based on library size for doublet detection @david-kelley

0.3.0 (2019-05-03)

0.2.4 (2018-12-20)

0.2.2 (2018-11-08)

  • added baselines and datasets for sMFISH imputation @jules

  • added harmonization content @chenling

  • fixing bugs on DE @romain

0.2.0 (2018-09-04)

0.1.6 (2018-08-08)

  • MMD and adversarial inference wrapper @eddie

  • Documentation @jeff

  • smFISH data imputation @max

0.1.5 (2018-07-24)

0.1.3 (2018-06-22)

0.1.2 (2018-06-13)

0.1.0 (2017-09-05)

  • First scVI TensorFlow version @romain

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

scvi-0.6.3.tar.gz (11.0 MB view details)

Uploaded Source

Built Distribution

scvi-0.6.3-py2.py3-none-any.whl (153.8 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file scvi-0.6.3.tar.gz.

File metadata

  • Download URL: scvi-0.6.3.tar.gz
  • Upload date:
  • Size: 11.0 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.3

File hashes

Hashes for scvi-0.6.3.tar.gz
Algorithm Hash digest
SHA256 707e5403fae1d3e6993676ab656866f2c7eb5f6ac1d956bb69766b1001b05824
MD5 90ebfcfc3dd0fc1ef4dcc87648f144cb
BLAKE2b-256 a9f24e08a742c8bc4c4a895f9862884505a8d8f22b5529d365878f4e55bcbc22

See more details on using hashes here.

File details

Details for the file scvi-0.6.3-py2.py3-none-any.whl.

File metadata

  • Download URL: scvi-0.6.3-py2.py3-none-any.whl
  • Upload date:
  • Size: 153.8 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.41.1 CPython/3.7.3

File hashes

Hashes for scvi-0.6.3-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 3f366c770e3ceded2f45b7ccfd3825a9bfb6330601a7c2e691c8c2c38bda161d
MD5 c1343315d22b43279396bb9f4c55e43e
BLAKE2b-256 14715af2f509339921724daceebae01436679c3549a5826ca3814caee48a916e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page