Image segmentation models with pre-trained backbones. PyTorch.
Project description
# Segmentation models
[](https://travis-ci.com/qubvel/segmentation_models.pytorch) [](https://shields.io/)
Segmentation models is python library with Neural Networks for Image Segmentation based on PyTorch.
The main features of this library are:
- High level API (just two lines to create neural network)
- 4 models architectures for binary and multi class segmentation (including legendary Unet)
- 30 available encoders for each architecture
- All encoders have pre-trained weights for faster and better convergence
### Table of content
1. [Quick start](#start)
2. [Models](#models)
1. [Architectires](#architectires)
2. [Encoders](#encoders)
3. [Pretrained weights](#weights)
3. [Installation](#installation)
4. [License](#license)
### Quick start <a name="start"></a>
Since the library is built on the PyTorch framework, created segmentation model is just a PyTorch nn.Module, which can be created as easy as:
```python
import segmentation_models_pytorch as smp
model = smp.Unet()
```
Depending on the task, you can change the network architecture by choosing backbones with fewer or more parameters and use pretrainded weights to initialize it:
```python
model = smp.Unet('resnet34', encoder_weights='imagenet')
```
Change number of output classes in the model:
```python
model = smp.Unet('resnet34', classes=3, activation='softmax')
```
All models have pretrained encoders, so you have to prepare your data the same way as during weights pretraining:
```python
from segmentation_models_pytorch.encoders import get_preprocessing_fn
preprocess_input = get_preprocessing_fn('renset18', pretrained='imagenet')
```
**Model training example** on CamVid dataset [here](https://github.com/qubvel/segmentation_models.pytorch/blob/master/examples/cars%20segmentation%20(camvid).ipynb).
### Models <a name="models"></a>
#### Architectires <a name="architectires"></a>
- [Unet](https://arxiv.org/abs/1505.04597)
- [Linknet](https://arxiv.org/abs/1707.03718)
- [FPN](http://presentations.cocodataset.org/COCO17-Stuff-FAIR.pdf)
- [PSPNet](https://arxiv.org/abs/1612.01105)
#### Encoders <a name="encoders"></a>
| Type | Encoder names |
|------------|-----------------------------------------------------------------|
| VGG | vgg11, vgg13, vgg16, vgg19, vgg11bn, vgg13bn, vgg16bn, vgg19bn |
| DenseNet | densenet121, densenet169, densenet201, densenet161 |
| DPN | dpn68, dpn68b, dpn92, dpn98, dpn107, dpn131 |
| Inception | inceptionresnetv2 |
| ResNet | resnet18, resnet34, resnet50, resnet101, resnet152 |
| SE-ResNet | se_resnet50, se_resnet101, se_resnet152 |
| SE-ResNeXt | se_resnext50_32x4d, se_resnext101_32x4d |
| SENet | senet154 | |
#### Weights <a name="weights"></a>
| Weights name | Encoder names |
|--------------|-----------------------|
| imagenet+5k | dpn68b, dpn92, dpn107 |
| imagenet | * all other encoders |
### Installation <a name="installation"></a>
PyPI version is not released yet, to install package from source run following command:
```bash
$ pip install git+https://github.com/qubvel/segmentation_models.pytorch
````
### License <a name="license"></a>
Project is distributed under [MIT License](https://github.com/qubvel/segmentation_models.pytorch/blob/master/LICENSE)
### Run tests
```bash
$ docker build -f docker/Dockerfile.dev -t smp:dev .
$ docker run --rm smp:dev pytest -p no:cacheprovider
```
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file segmentation_models_pytorch-0.0.1.tar.gz
.
File metadata
- Download URL: segmentation_models_pytorch-0.0.1.tar.gz
- Upload date:
- Size: 16.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.19.9 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f4b2338f995565f9a0018ac869fc7240569d87a4a63dfb666ed59533c7405423
|
|
MD5 |
6166491a531663816d3f3484b546adde
|
|
BLAKE2b-256 |
525c60d03e239f3c49ab293b4c26b16262fcde77ca1eb95d8b794f75f9e0ecf0
|
File details
Details for the file segmentation_models_pytorch-0.0.1-py2.py3-none-any.whl
.
File metadata
- Download URL: segmentation_models_pytorch-0.0.1-py2.py3-none-any.whl
- Upload date:
- Size: 24.1 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.18.4 setuptools/39.2.0 requests-toolbelt/0.9.1 tqdm/4.19.9 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
694e7985d98e2a1a2caece322c5fa3c4b2b7fcc2c78cd00afb0372026a4a62cb
|
|
MD5 |
eec9faf0a8a6f82e8d71c77fda701fd7
|
|
BLAKE2b-256 |
537fa009f9d116ca46be5ce8be2e2de318c4da57b62e32fa0b11a938b2808bb8
|