Skip to main content

No project description provided

Project description

Self-Operating Computer Framework

A framework to enable multimodal models to operate a computer.

Using the same inputs and outputs as a human operator, the model views the screen and decides on a series of mouse and keyboard actions to reach an objective.

Key Features

  • Compatibility: Designed for various multimodal models.
  • Integration: Currently integrated with GPT-4v, Gemini Pro Vision, and LLaVa.
  • Future Plans: Support for additional models.

Ongoing Development

At HyperwriteAI, we are developing Agent-1-Vision a multimodal model with more accurate click location predictions.

Agent-1-Vision Model API Access

We will soon be offering API access to our Agent-1-Vision model.

If you're interested in gaining access to this API, sign up here.

Demo

https://github.com/OthersideAI/self-operating-computer/assets/42594239/9e8abc96-c76a-46fb-9b13-03678b3c67e0

Run Self-Operating Computer

  1. Install the project
pip install self-operating-computer
  1. Run the project
operate
  1. Enter your OpenAI Key: If you don't have one, you can obtain an OpenAI key here
  1. Give Terminal app the required permissions: As a last step, the Terminal app will ask for permission for "Screen Recording" and "Accessibility" in the "Security & Privacy" page of Mac's "System Preferences".

Alternatively installation with .sh

  1. Clone the repo to a directory on your computer:
git clone https://github.com/OthersideAI/self-operating-computer.git
  1. Cd into directory:
cd self-operating-computer
  1. Run the installation script:
./run.sh

Using operate Modes

Multimodal Models -m

An additional model is now compatible with the Self Operating Computer Framework. Try Google's gemini-pro-vision by following the instructions below.

Start operate with the Gemini model

operate -m gemini-pro-vision

Enter your Google AI Studio API key when terminal prompts you for it If you don't have one, you can obtain a key here after setting up your Google AI Studio account. You may also need authorize credentials for a desktop application. It took me a bit of time to get it working, if anyone knows a simpler way, please make a PR.

Locally Hosted LLaVA Through Ollama

If you wish to experiment with the Self-Operating Computer Framework using LLaVA on your own machine, you can with Ollama!
Note: Ollama currently only supports MacOS and Linux

First, install Ollama on your machine from https://ollama.ai/download.

Once Ollama is installed, pull the LLaVA model:

ollama pull llava

This will download the model on your machine which takes approximately 5 GB of storage.

When Ollama has finished pulling LLaVA, start the server:

ollama serve

That's it! Now start operate and select the LLaVA model:

operate -m llava

Important: Error rates when using LLaVA are very high. This is simply intended to be a base to build off of as local multimodal models improve over time.

Learn more about Ollama at its GitHub Repository

Voice Mode --voice

The framework supports voice inputs for the objective. Try voice by following the instructions below. Clone the repo to a directory on your computer:

git clone https://github.com/OthersideAI/self-operating-computer.git

Cd into directory:

cd self-operating-computer

Install the additional requirements-audio.txt

pip install -r requirements-audio.txt

Install device requirements For mac users:

brew install portaudio

For Linux users:

sudo apt install portaudio19-dev python3-pyaudio

Run with voice mode

operate --voice

Optical Character Recognition Mode -m gpt-4-with-ocr

The Self-Operating Computer Framework now integrates Optical Character Recognition (OCR) capabilities with the gpt-4-with-ocr mode. This mode gives GPT-4 a hash map of clickable elements by coordinates. GPT-4 can decide to click elements by text and then the code references the hash map to get the coordinates for that element GPT-4 wanted to click.

Based on recent tests, OCR performs better than som and vanilla GPT-4 so we made it the default for the project. To use the OCR mode you can simply write:

operate or operate -m gpt-4-with-ocr will also work.

Set-of-Mark Prompting -m gpt-4-with-som

The Self-Operating Computer Framework now supports Set-of-Mark (SoM) Prompting with the gpt-4-with-som command. This new visual prompting method enhances the visual grounding capabilities of large multimodal models.

Learn more about SoM Prompting in the detailed arXiv paper: here.

For this initial version, a simple YOLOv8 model is trained for button detection, and the best.pt file is included under model/weights/. Users are encouraged to swap in their best.pt file to evaluate performance improvements. If your model outperforms the existing one, please contribute by creating a pull request (PR).

Start operate with the SoM model

operate -m gpt-4-with-som

Contributions are Welcomed!:

If you want to contribute yourself, see CONTRIBUTING.md.

Feedback

For any input on improving this project, feel free to reach out to Josh on Twitter.

Join Our Discord Community

For real-time discussions and community support, join our Discord server.

Follow HyperWriteAI for More Updates

Stay updated with the latest developments:

Compatibility

  • This project is compatible with Mac OS, Windows, and Linux (with X server installed).

OpenAI Rate Limiting Note

The gpt-4-vision-preview model is required. To unlock access to this model, your account needs to spend at least $5 in API credits. Pre-paying for these credits will unlock access if you haven't already spent the minimum $5.
Learn more here

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

self-operating-computer-1.3.1.tar.gz (5.7 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

self_operating_computer-1.3.1-py3-none-any.whl (5.7 MB view details)

Uploaded Python 3

File details

Details for the file self-operating-computer-1.3.1.tar.gz.

File metadata

  • Download URL: self-operating-computer-1.3.1.tar.gz
  • Upload date:
  • Size: 5.7 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for self-operating-computer-1.3.1.tar.gz
Algorithm Hash digest
SHA256 5046be139701c2f25e1c2376115e8e6f09b998f09cbae16a1eb54c9fc54d2c1a
MD5 2b943342a218ec0477a05718ad8ebc59
BLAKE2b-256 fa152f315c1e56b9999a021a7df22fc2b85bfb108bc41b8412fcb6e141e01531

See more details on using hashes here.

File details

Details for the file self_operating_computer-1.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for self_operating_computer-1.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 94f877a621bf1833b89363dfda9a2e401d6b75f42abd5e81a9d76125d9b2af84
MD5 dddafa617140d29d4f35e260c1b4b8e5
BLAKE2b-256 674cd8ed353bf7aee9529c69f76e0525a12bd929f91fd4a87cacacc658367332

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page