Skip to main content

Semantic Kernel Python SDK

Project description

Get Started with Semantic Kernel Python

Highlights

  • Flexible Agent Framework: build, orchestrate, and deploy AI agents and multi-agent systems
  • Multi-Agent Systems: Model workflows and collaboration between AI specialists
  • Plugin Ecosystem: Extend with Python, OpenAPI, Model Context Protocol (MCP), and more
  • LLM Support: OpenAI, Azure OpenAI, Hugging Face, Mistral, Google AI, ONNX, Ollama, NVIDIA NIM, and others
  • Vector DB Support: Azure AI Search, Elasticsearch, Chroma, and more
  • Process Framework: Build structured business processes with workflow modeling
  • Multimodal: Text, vision, audio

Quick Install

pip install --upgrade semantic-kernel
# Optional: Add integrations
pip install --upgrade semantic-kernel[hugging_face]
pip install --upgrade semantic-kernel[all]

Supported Platforms:

  • Python: 3.10+
  • OS: Windows, macOS, Linux

1. Setup API Keys

Set as environment variables, or create a .env file at your project root:

OPENAI_API_KEY=sk-...
OPENAI_CHAT_MODEL_ID=...
...
AZURE_OPENAI_API_KEY=...
AZURE_OPENAI_ENDPOINT=...
AZURE_OPENAI_CHAT_DEPLOYMENT_NAME=...
...

You can also override environment variables by explicitly passing configuration parameters to the AI service constructor:

chat_service = AzureChatCompletion(
    api_key=...,
    endpoint=...,
    deployment_name=...,
    api_version=...,
)

See the following setup guide for more information.

2. Use the Kernel for Prompt Engineering

Create prompt functions and invoke them via the Kernel:

import asyncio
from semantic_kernel import Kernel
from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion
from semantic_kernel.functions import KernelArguments

kernel = Kernel()
kernel.add_service(OpenAIChatCompletion())

prompt = """
1) A robot may not injure a human being...
2) A robot must obey orders given it by human beings...
3) A robot must protect its own existence...

Give me the TLDR in exactly {{$num_words}} words."""


async def main():
    result = await kernel.invoke_prompt(prompt, arguments=KernelArguments(num_words=5))
    print(result)


asyncio.run(main())
# Output: Protect humans, obey, self-preserve, prioritized.

3. Directly Use AI Services (No Kernel Required)

You can use the AI service classes directly for advanced workflows:

import asyncio
import asyncio

from semantic_kernel.connectors.ai.open_ai import OpenAIChatCompletion, OpenAIChatPromptExecutionSettings
from semantic_kernel.contents import ChatHistory


async def main():
    service = OpenAIChatCompletion()
    settings = OpenAIChatPromptExecutionSettings()

    chat_history = ChatHistory(system_message="You are a helpful assistant.")
    chat_history.add_user_message("Write a haiku about Semantic Kernel.")
    response = await service.get_chat_message_content(chat_history=chat_history, settings=settings)
    print(response.content)

    """
    Output:

    Thoughts weave through context,  
    Semantic threads interlace—  
    Kernel sparks meaning.
    """


asyncio.run(main())

4. Build an Agent with Plugins and Tools

Add Python functions as plugins or Pydantic models as structured outputs;

Enhance your agent with custom tools (plugins) and structured output:

import asyncio
from typing import Annotated
from pydantic import BaseModel
from semantic_kernel.agents import ChatCompletionAgent
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion, OpenAIChatPromptExecutionSettings
from semantic_kernel.functions import kernel_function, KernelArguments

class MenuPlugin:
    @kernel_function(description="Provides a list of specials from the menu.")
    def get_specials(self) -> Annotated[str, "Returns the specials from the menu."]:
        return """
        Special Soup: Clam Chowder
        Special Salad: Cobb Salad
        Special Drink: Chai Tea
        """

    @kernel_function(description="Provides the price of the requested menu item.")
    def get_item_price(
        self, menu_item: Annotated[str, "The name of the menu item."]
    ) -> Annotated[str, "Returns the price of the menu item."]:
        return "$9.99"

class MenuItem(BaseModel):
    # Used for structured outputs
    price: float
    name: str

async def main():
    # Configure structured outputs format
    settings = OpenAIChatPromptExecutionSettings()
    settings.response_format = MenuItem

    # Create agent with plugin and settings
    agent = ChatCompletionAgent(
        service=AzureChatCompletion(),
        name="SK-Assistant",
        instructions="You are a helpful assistant.",
        plugins=[MenuPlugin()],
        arguments=KernelArguments(settings)
    )

    response = await agent.get_response("What is the price of the soup special?")
    print(response.content)

    # Output:
    # The price of the Clam Chowder, which is the soup special, is $9.99.

asyncio.run(main()) 

You can explore additional getting started agent samples here.

5. Multi-Agent Orchestration

Coordinate a group of agents to iteratively solve a problem or refine content together:

import asyncio
from semantic_kernel.agents import ChatCompletionAgent, GroupChatOrchestration, RoundRobinGroupChatManager
from semantic_kernel.agents.runtime import InProcessRuntime
from semantic_kernel.connectors.ai.open_ai import AzureChatCompletion

def get_agents():
    return [
        ChatCompletionAgent(
            name="Writer",
            instructions="You are a creative content writer. Generate and refine slogans based on feedback.",
            service=AzureChatCompletion(),
        ),
        ChatCompletionAgent(
            name="Reviewer",
            instructions="You are a critical reviewer. Provide detailed feedback on proposed slogans.",
            service=AzureChatCompletion(),
        ),
    ]

async def main():
    agents = get_agents()
    group_chat = GroupChatOrchestration(
        members=agents,
        manager=RoundRobinGroupChatManager(max_rounds=5),
    )
    runtime = InProcessRuntime()
    runtime.start()
    result = await group_chat.invoke(
        task="Create a slogan for a new electric SUV that is affordable and fun to drive.",
        runtime=runtime,
    )
    value = await result.get()
    print(f"Final Slogan: {value}")

    # Example Output:
    # Final Slogan: "Feel the Charge: Adventure Meets Affordability in Your New Electric SUV!"

    await runtime.stop_when_idle()

if __name__ == "__main__":
    asyncio.run(main())

For orchestration-focused examples, see these orchestration samples.

More Examples & Notebooks

Semantic Kernel Documentation

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

semantic_kernel-1.39.4.tar.gz (602.4 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

semantic_kernel-1.39.4-py3-none-any.whl (914.3 kB view details)

Uploaded Python 3

File details

Details for the file semantic_kernel-1.39.4.tar.gz.

File metadata

  • Download URL: semantic_kernel-1.39.4.tar.gz
  • Upload date:
  • Size: 602.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.11

File hashes

Hashes for semantic_kernel-1.39.4.tar.gz
Algorithm Hash digest
SHA256 9f629919346216f3b48c1ea6da56fa3d1bffd546a6be8fe5b7893a097f0dc798
MD5 0500d54d3feebf8455f0332bf69f28a4
BLAKE2b-256 f4dca915e90d755fe601831406f7f77bfa3b44cb7eaacd60aca2722a8414b96a

See more details on using hashes here.

File details

Details for the file semantic_kernel-1.39.4-py3-none-any.whl.

File metadata

File hashes

Hashes for semantic_kernel-1.39.4-py3-none-any.whl
Algorithm Hash digest
SHA256 a10833e493485f59e22e988975396f234871a4103a424c30ac9569591b43870d
MD5 f461cf9540c4dbadd38dbb0fbfa4e85e
BLAKE2b-256 0338edd944f3a5781573a8c965de8940339e0dc90f3fe088a0ca405af676a438

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page