Skip to main content

Unofficial Semantic Scholar Academic Graph API client library for Python.

Project description

semanticscholar

Latest version PyPI - Downloads GitHub license Codacy grade Codacy coverage

Unofficial Semantic Scholar Academic Graph API client library for Python.

Table of Contents

How to install

pip install semanticscholar

Usage

Programmatically retrieve paper and author data by ID or query string. Can be used to access both the public API and the S2 Data Partner's API using a private key.

Paper Lookup

To access paper data:

from semanticscholar import SemanticScholar
sch = SemanticScholar()
paper = sch.get_paper('10.1093/mind/lix.236.433')
paper.title

Output:

'Computing Machinery and Intelligence'

Author Lookup

To access author data:

from semanticscholar import SemanticScholar
sch = SemanticScholar()
author = sch.get_author(2262347)
author.name

Output:

'Alan M. Turing'

Search for papers and authors

To search for papers by keyword:

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_paper('Computing Machinery and Intelligence')
print(f'{results.total} results.', f'First occurrence: {results[0].title}.')

Output:

492 results. First occurrence: Computing Machinery and Intelligence.

To search for authors by keyword:

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_author('Alan M. Turing')
print(f'{results.total} results.', f'First occurrence: {results[0].title}.')

Output:

4 results. First occurrence: A. Turing.

Traversing search results

Each call to search_paper() and search_author() will paginate through results, returning the list of papers or authors up to the bound limit (default value is 100). You can retrieve the next batch of results by calling next_page() or simply iterating over all of them:

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_paper('Computing Machinery and Intelligence')
for item in results:
     print(item.title)

Output:

Computing Machinery and Intelligence
Computing Machinery and Intelligence (1950)
Artificial intelligence in the research of consciousness and in social life (in honor of 70-years anniversary of A. Turing’s paper “Computing Machinery and Intelligence” (papers of the “round table”)
Studies on computing machinery and intelligence
On Computing Machinery and Intelligence
...
Information revolution: Impact of technology on global workforce

When iterating over the return of search methods, the client library will always traverse all results regardless of the number of pages. If just the first batch is enough, you can avoid more calls to API, handling only current results:

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_paper('Computing Machinery and Intelligence')
for item in results.items:
     print(item.title)

Output:

Computing Machinery and Intelligence
Computing Machinery and Intelligence (1950)
Artificial intelligence in the research of consciousness and in social life (in honor of 70-years anniversary of A. Turing’s paper “Computing Machinery and Intelligence” (papers of the “round table”)
Studies on computing machinery and intelligence
On Computing Machinery and Intelligence
...
Building Thinking Machines by Solving Animal Cognition Tasks

Query parameters for all methods

fields: list

The list of the fields to be returned. By default, the response includes all fields. As explained in official documentation, fields like papers (author lookup and search) may result in responses bigger than the usual size and affect performance. Consider reducing the list. Check official documentation for a list of available fields.

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_paper('software engineering', fields=['title','year'])
for item in results:
     print(item)

Output:

{'paperId': 'd0bc1501ae6f54dd16534e651d90d2aeeeb1cfc1', 'title': 'Software engineering: What is it?', 'year': 2018}
{'paperId': 'f70b2f20be241f445a61f33c4b8e76e554760340', 'title': 'Software Engineering for Machine Learning: A Case Study', 'year': 2019}
{'paperId': '55bdaa9d27ed595e2ccf34b3a7847020cc9c946c', 'title': 'Performing systematic literature reviews in software engineering', 'year': 2006}
{'paperId': '27e57cc2f22c1921d2a1c3954d5062e3fe391553', 'title': 'Guidelines for conducting and reporting case study research in software engineering', 'year': 2009}    
{'paperId': '81dbfc1bc890368979399874e47e0529ddceaece', 'title': "Software Engineering: A Practitioner's Approach", 'year': 1982}
...

Query parameters for all search methods

limit: int

This parameter represents the maximum number of results to return on each call to API, and its value can't be higher than 100, which is the default value. According to official documentation, setting a smaller limit reduces output size and latency.

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_paper('software engineering', limit=5)
len(results)

Output:

5

Query parameters for search papers

year: str

Restrict results to a specific publication year or a given range, following the patterns '{year}' or '{start}-{end}'. Also you can omit the start or the end. Examples: '2000', '1991-2000', '1991-', '-2000'.

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_paper('software engineering', year=2000)
results[0].year

Output:

2000

fields_of_study: list

Restrict results to a given list of fields of study. Check official documentation for a list of available fields.

from semanticscholar import SemanticScholar
sch = SemanticScholar()
results = sch.search_paper('software engineering', fields_of_study=['Computer Science','Education'])
results[0].s2FieldsOfStudy

Output:

[{'category': 'Computer Science', 'source': 'external'}, {'category': 'Computer Science', 'source': 's2-fos-model'}]

Other options

timeout: int

You can set the wait time for a response. By default, requests to API will wait for 10 seconds until the Timeout Exception raises. To change the default value, specify it at instance creation of SemanticScholar class:

from semanticscholar import SemanticScholar
sch = SemanticScholar(timeout=5)

or set timeout property value:

from semanticscholar import SemanticScholar
sch = SemanticScholar()
sch.timeout = 5

Accessing the Data Partner's API

If you are a Semantic Scholar Data Partner you can provide the private key as an optional argument:

from semanticscholar import SemanticScholar
s2_api_key = '40-CharacterPrivateKeyProvidedToPartners'
sch = SemanticScholar(api_key=s2_api_key)

Semantic Scholar Academic Graph API docs

To get more detailed information about Semantic Scholar Academic Graph API functionalities and limitations, go to the official documentation. The Frequently Asked Questions page also provides helpful content if you need a better understanding of data fetched from Semantic Scholar services.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

semanticscholar-0.3.2.tar.gz (13.5 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

semanticscholar-0.3.2-py3-none-any.whl (13.1 kB view details)

Uploaded Python 3

File details

Details for the file semanticscholar-0.3.2.tar.gz.

File metadata

  • Download URL: semanticscholar-0.3.2.tar.gz
  • Upload date:
  • Size: 13.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.1

File hashes

Hashes for semanticscholar-0.3.2.tar.gz
Algorithm Hash digest
SHA256 bb643a3ee4d9471f623b5b7f20df91d88c8708dd9dd7604c967f40435544eb53
MD5 4fadcf12ec2914e1a4814964b2fe5e91
BLAKE2b-256 0fd1e020e1183da3fe02ce4d1d8bf65715ae97aef7ef6833f25ef2fe007fa7e4

See more details on using hashes here.

File details

Details for the file semanticscholar-0.3.2-py3-none-any.whl.

File metadata

File hashes

Hashes for semanticscholar-0.3.2-py3-none-any.whl
Algorithm Hash digest
SHA256 977f6b3092ee349898b3144d3a6891c5b0147ea9995027965af730865e69d516
MD5 074ac874330ed3b39b516c92c54e35d1
BLAKE2b-256 c381adcf2316d8a164abf5a15a579ac369f8518ddb762ac0912da7af9c80a8cf

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page