Skip to main content

SentencePiece python wrapper

Project description

SentencePiece Python Wrapper

Python wrapper for SentencePiece. This API will offer the encoding, decoding and training of Sentencepiece.

Build and Install SentencePiece

For Linux (x64/i686), macOS, and Windows(win32/x64) environment, you can simply use pip command to install SentencePiece python module.

% pip install sentencepiece

To build and install the Python wrapper from source, try the following commands to build and install wheel package.

% git clone https://github.com/google/sentencepiece.git 
% cd sentencepiece
% mkdir build
% cd build
% cmake .. -DSPM_ENABLE_SHARED=OFF -DCMAKE_INSTALL_PREFIX=./root
% make install
% cd ../python
% python setup.py bdist_wheel
% pip install dist/sentencepiece*.whl

If you don’t have write permission to the global site-packages directory or don’t want to install into it, please try:

% python setup.py install --user

Usage

See this google colab page to run sentencepiece interactively.

Segmentation

% python
>>> import sentencepiece as spm
>>> sp = spm.SentencePieceProcessor(model_file='test/test_model.model')

>>> sp.encode('This is a test')
[284, 47, 11, 4, 15, 400]

>>> sp.encode(['This is a test', 'Hello world'], out_type=int)
[[284, 47, 11, 4, 15, 400], [151, 88, 21, 887]]

>>> sp.encode_as_ids(['This is a test', 'Hello world'])
[[284, 47, 11, 4, 15, 400], [151, 88, 21, 887]]

>>> sp.encode('This is a test', out_type=str)
['▁This', '▁is', '▁a', '▁', 't', 'est']

>>> sp.encode(['This is a test', 'Hello world'], out_type=str)
[['▁This', '▁is', '▁a', '▁', 't', 'est'], ['▁He', 'll', 'o', '▁world']]

>>> sp.encode_as_pieces(['This is a test', 'Hello world'])
[['▁This', '▁is', '▁a', '▁', 't', 'est'], ['▁He', 'll', 'o', '▁world']]

>>> proto = sp.encode('This is a test', out_type='immutable_proto')
>>> for n in proto.pieces:
...     print('piece="{}" surface="{}" id={} begin={} end={}'.format(n.piece, n.surface, n.id, n.begin, n.end))
... 
piece="▁This" surface="This" id=284 begin=0 end=4
piece="▁is" surface=" is" id=47 begin=4 end=7
piece="▁a" surface=" a" id=11 begin=7 end=9
piece="▁" surface=" " id=4 begin=9 end=10
piece="t" surface="t" id=15 begin=10 end=11
piece="est" surface="est" id=400 begin=11 end=14

>>> [[x.id for x in proto.pieces], [x.piece for x in proto.pieces], [x.begin for x in proto.pieces], [x.end for x in proto.pieces]]
[[284, 47, 11, 4, 15, 400], ['▁This', '▁is', '▁a', '▁', 't', 'est'], [0, 4, 7, 9, 10, 11], [4, 7, 9, 10, 11, 14]]

>>> proto2 = sp.encode_as_immutable_proto('This is a test')
>>> proto2 == proto
True

>>> for _ in range(10):
...     sp.encode('This is a test', out_type=str, enable_sampling=True, alpha=0.1, nbest_size=-1)
... 
['▁', 'This', '▁', 'is', '▁a', '▁', 't', 'e', 'st']
['▁T', 'h', 'i', 's', '▁is', '▁a', '▁', 'te', 's', 't']
['▁T', 'h', 'is', '▁', 'is', '▁', 'a', '▁', 't', 'est']
['▁', 'This', '▁is', '▁', 'a', '▁', 't', 'e', 'st']
['▁', 'This', '▁', 'is', '▁', 'a', '▁', 't', 'e', 's', 't']
['▁This', '▁is', '▁a', '▁', 'te', 's', 't']
['▁This', '▁is', '▁', 'a', '▁', 't', 'e', 'st']
['▁', 'T', 'h', 'is', '▁', 'is', '▁', 'a', '▁', 'te', 'st']
['▁', 'This', '▁', 'i', 's', '▁a', '▁', 't', 'e', 'st']
['▁This', '▁', 'is', '▁a', '▁', 't', 'est']

>> sp.nbest_encode('This is a test', nbest_size=5, out_type=str)
[['▁This', '▁is', '▁a', '▁', 't', 'est'], 
['▁This', '▁is', '▁a', '▁', 'te', 'st'], 
['▁This', '▁is', '▁a', '▁', 'te', 's', 't'],
['▁This', '▁is', '▁a', '▁', 't', 'e', 'st'],
['▁This', '▁is', '▁a', '▁', 't', 'es', 't']]

>>> sp.sample_encode_and_score('This is a test', num_samples=5, alpha=0.1, out_type=str, wor=True)
[(['▁This', '▁', 'i', 's', '▁a', '▁', 'te', 's', 't'], -3.043105125427246),
(['▁This', '▁', 'i', 's', '▁a', '▁', 'te', 'st'], -2.8475849628448486),
(['▁', 'This', '▁is', '▁', 'a', '▁', 'te', 'st'], -3.043248176574707),
(['▁', 'This', '▁is', '▁a', '▁', 't', 'e', 'st'], -2.87727689743042),
(['▁', 'This', '▁', 'i', 's', '▁', 'a', '▁', 't', 'est'], -3.6284031867980957)]

>>> sp.decode([284, 47, 11, 4, 15, 400])
'This is a test'

>>> sp.decode([[284, 47, 11, 4, 15, 400], [151, 88, 21, 887]])
['This is a test', 'Hello world']

>>> proto = sp.decode([284, 47, 11, 4, 15, 400], out_type='immutable_proto') 
>>> proto.text
'This is a test'

>>> sp.decode(['▁', 'This', '▁', 'is', '▁a', '▁', 't', 'e', 'st'])
'This is a test'

>>> sp.decode([['▁This', '▁is', '▁a', '▁', 't', 'est'], ['▁He', 'll', 'o', '▁world']])
['This is a test', 'Hello world']

>>> sp.get_piece_size()
1000

>>> sp.id_to_piece(2)
'</s>'

>>> sp.id_to_piece([2, 3, 4])
['</s>', '\r', '▁']

>>> sp.piece_to_id('<s>')
1

>>> sp.piece_to_id(['</s>', '\r', '▁'])
[2, 3, 4]

>>> len(sp)
1000

>>> sp['</s>']
2

Model Training

Training is performed by passing parameters of spm_train to SentencePieceTrainer.train() function.

>>> import sentencepiece as spm
>>> spm.SentencePieceTrainer.train(input='test/botchan.txt', model_prefix='m', vocab_size=1000, user_defined_symbols=['foo', 'bar'])
sentencepiece_trainer.cc(73) LOG(INFO) Starts training with : 
trainer_spec {
  input: test/botchan.txt
  .. snip
unigram_model_trainer.cc(500) LOG(INFO) EM sub_iter=1 size=1188 obj=10.2839 num_tokens=32182 num_tokens/piece=27.0892
unigram_model_trainer.cc(500) LOG(INFO) EM sub_iter=0 size=1100 obj=10.4269 num_tokens=33001 num_tokens/piece=30.0009
unigram_model_trainer.cc(500) LOG(INFO) EM sub_iter=1 size=1100 obj=10.4069 num_tokens=33002 num_tokens/piece=30.0018
trainer_interface.cc(595) LOG(INFO) Saving model: m.model
trainer_interface.cc(619) LOG(INFO) Saving vocabs: m.vocab
>>>

Training without local filesystem

Sentencepiece trainer can receive any iterable object to feed training sentences. You can also pass a file object (instance with write() method) to emit the output model to any devices. These features are useful to run sentencepiece on environment that have limited access to the local file system (e.g., Google colab.)

import urllib.request
import io
import sentencepiece as spm

# Loads model from URL as iterator and stores the model to BytesIO.
model = io.BytesIO()
with urllib.request.urlopen(
    'https://raw.githubusercontent.com/google/sentencepiece/master/data/botchan.txt'
) as response:
  spm.SentencePieceTrainer.train(
      sentence_iterator=response, model_writer=model, vocab_size=1000)

# Serialize the model as file.
# with open('out.model', 'wb') as f:
#   f.write(model.getvalue())

# Directly load the model from serialized model.
sp = spm.SentencePieceProcessor(model_proto=model.getvalue())
print(sp.encode('this is test'))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sentencepiece-0.1.97.tar.gz (524.7 kB view details)

Uploaded Source

Built Distributions

sentencepiece-0.1.97-cp310-cp310-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.10Windows x86-64

sentencepiece-0.1.97-cp310-cp310-win32.whl (1.1 MB view details)

Uploaded CPython 3.10Windows x86

sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ i686

sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

sentencepiece-0.1.97-cp310-cp310-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

sentencepiece-0.1.97-cp310-cp310-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

sentencepiece-0.1.97-cp310-cp310-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

sentencepiece-0.1.97-cp39-cp39-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.9Windows x86-64

sentencepiece-0.1.97-cp39-cp39-win32.whl (1.1 MB view details)

Uploaded CPython 3.9Windows x86

sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ i686

sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

sentencepiece-0.1.97-cp39-cp39-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

sentencepiece-0.1.97-cp39-cp39-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

sentencepiece-0.1.97-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

sentencepiece-0.1.97-cp38-cp38-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.8Windows x86-64

sentencepiece-0.1.97-cp38-cp38-win32.whl (1.1 MB view details)

Uploaded CPython 3.8Windows x86

sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ i686

sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

sentencepiece-0.1.97-cp38-cp38-macosx_11_0_arm64.whl (1.1 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

sentencepiece-0.1.97-cp38-cp38-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

sentencepiece-0.1.97-cp38-cp38-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

sentencepiece-0.1.97-cp37-cp37m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.7mWindows x86-64

sentencepiece-0.1.97-cp37-cp37m-win32.whl (1.1 MB view details)

Uploaded CPython 3.7mWindows x86

sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ i686

sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ ARM64

sentencepiece-0.1.97-cp37-cp37m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

sentencepiece-0.1.97-cp36-cp36m-win_amd64.whl (1.1 MB view details)

Uploaded CPython 3.6mWindows x86-64

sentencepiece-0.1.97-cp36-cp36m-win32.whl (1.1 MB view details)

Uploaded CPython 3.6mWindows x86

sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (1.3 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ i686

sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.2 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ ARM64

sentencepiece-0.1.97-cp36-cp36m-macosx_10_9_x86_64.whl (1.2 MB view details)

Uploaded CPython 3.6mmacOS 10.9+ x86-64

File details

Details for the file sentencepiece-0.1.97.tar.gz.

File metadata

  • Download URL: sentencepiece-0.1.97.tar.gz
  • Upload date:
  • Size: 524.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for sentencepiece-0.1.97.tar.gz
Algorithm Hash digest
SHA256 c901305e0a710bbcd296f66d79e96f744e6e175b29812bd5178318437d4e1f6c
MD5 955dc63c1e0e2c50dcbdd8251ec2b499
BLAKE2b-256 ec87f26695307c0aa00e6938f5de795fc7f2c718a448b48d29a4c8c8dbf829d3

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 f7dc55379e2f7dee86537180283db2e5f8418c6825fdd2fe436c724eb5604c05
MD5 34dfcbc933ce3658b29a3b5ed5d4a1d1
BLAKE2b-256 b26dbf0668915c5a526b6eb24b7663f14fd61f6ee194a399b48f942f10e8eb81

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ee3c9dbd558d8d85bb1617087b86df6ea2b856a528669630ce6cedeb4353b823
MD5 f526f02b826cb1f1d0829fd5c87c9532
BLAKE2b-256 f5b9a887a0855acccceb2b26a852a5f78fb24d084628f1ab2c7eaf00e9e01cb2

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28b183dadef8e8b6b4645c1c20692d7be0a13ecc3ec1a07b3885c8905516675f
MD5 5e23912879585536c17fbe92e89f0358
BLAKE2b-256 40e0ed30ef89551443c9e7a7e8844727c064294e28836c6ca1a4452283077b46

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 205050670c53ef9015e2a98cce3934bfbcf0aafaa14caa0c618dd5667bc217ee
MD5 306a52e8501ac3230bbe87cf05d16c29
BLAKE2b-256 cb6f42d484390fbbb8451dade6440d2594e634bdd2e5bcacdb9bef54997c796f

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2780531985af79c6163f63d4f200fec8a28b70b6768d2c19f70d01568a4524e8
MD5 b4af743c2efb523a6e4e363072684206
BLAKE2b-256 786670a02c8e3c4e58705de62e079b40b3f5e00ddd41027dedec853dea7bb02f

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 667193c57fb48b238be7e3d7636cfc8da56cb5bac5559d8f0b647334e1175be8
MD5 ffb5a16985b562687e18ca1ab6200c64
BLAKE2b-256 0c99107fbd7397839249609e02e2820d811ffcfec8fe79200af7b36088fbda13

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 09e1bc53178de70c557a9ba4fece07364b4416ce3d36570726b3372b68aea135
MD5 1ee94b5ae162236b7d7adcacf7612be2
BLAKE2b-256 5ddae668160f7f4e446360608e22f927b56b2f5f614f746f85e3a570302f713a

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6f249c8f1852893be86eae66b19d522c5fb30bbad4fe2d1b07f06fdc86e1907e
MD5 a9a7169e5bdcfb92caae4121a1f7bb3e
BLAKE2b-256 7b429993a88794b1482a8d70dd57fb1255ab07080fa96a8ed681494074c21940

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c6641d0b7acec61fde5881ea6ebe098c169557ac9aa3bdabdf124eab5a5592bb
MD5 bf34dd1587d99fe591860ba87a0ce651
BLAKE2b-256 a00060ace262cce93cb0245025a639bd321bbf4f7b7e23e30cfdefe36cc141ed

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-win32.whl.

File metadata

  • Download URL: sentencepiece-0.1.97-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 24306fd86031c17a1a6ae92671e76a350390a3140a65620bc2843dad7db24e2a
MD5 bc16c38722cd4b72886533d127024e36
BLAKE2b-256 80a61bc2e2e56b222cdf4c4b6a2d447d16bb3efe22a6d85f89731663c10c6b7a

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 753b8088fd685ee787d9f54c84275ab347de558c7c4ebc6accb4c35bf7776f20
MD5 b666d5321d5faeecc3eb899b29b541c2
BLAKE2b-256 3fff6702fbb42d2209ce6ddef4721c78e3c050a329f578b39ce4ad6df7e9c0b9

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a78c03800ef9f02d320e0159f5768b15357f3e9ebea545c9c4ba7928ba8ba254
MD5 ba7fc12ccf27f7cdf64a6532c02d863e
BLAKE2b-256 da45a44e7821768845439e3c1ac57c605f536e557c91c50b69ce6068288eb4a6

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce61efc1862ccb18856c4aabbd930e13d5bfbb4b09b4f111081ac53a9dc62275
MD5 0c3af71caa4ae599817a9c3eece46a3e
BLAKE2b-256 d6e859ede548ce54be3cf4c9796ef392f954bca48324ef2d16f1e5038c95ac83

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1706a8a8188f7b3d4b7922db9bb00c64c4e16ee68ab4caaae79f55b3e18748c7
MD5 34b5e0e3f93ce2afe5093dea47223bfa
BLAKE2b-256 0be5cd9f0b38440ed911ddb2077e6c649c46c90d2b98274c09bb22101345656d

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 35c227b6d55e473033db7e0ecc51b1e99e6ed7607cc08602fb5768132543c81d
MD5 8c4470652255800f1bb449aa00a67d2d
BLAKE2b-256 dc95d4e5a23849ef8cceffc106f94c826a4f4cc39d3395e918eb8ed9fbaf5470

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f92876271a10494671431ad955bff2d6f8ea59baaf957f5ae5946aff56dfcb90
MD5 9134407eeb5037b1a078012a06e23032
BLAKE2b-256 f64138a78a429392926f7d87bf6647233ebf00e55511cfda86c04241cab21c32

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 5137ff0d0b1cc574751d178650ef800ff8d90bf21eb9f71e9567d4a0548940a5
MD5 ad3622f482d5d148d3d3b573b5470752
BLAKE2b-256 723192d0ada03abf4d2b98fdaa64f10d760225ac2a9a398c0fd7ba6f3660b17b

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-win32.whl.

File metadata

  • Download URL: sentencepiece-0.1.97-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 fa6f2b88850b5fae3a05053658824cf9f147c8e3c3b40eb64539a976c83d8a24
MD5 1bcf180481dcfa9b23b72f7f6d6ffbbe
BLAKE2b-256 a29dbc120b5b85d6f70521d797db1048a42f0fe1fa63bc4aeb40df026af2cf9e

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 923ee4af16dbae1f2ab358ed09f8a0eb89e40a8198a8b343bf54181482342721
MD5 00e431e5461ca24776ef9ef6a2def0fa
BLAKE2b-256 0e7ea69d054029c7c0470e490b3265bbd1497df9492599b1820b9d5be2c60444

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 e3ae2e9b7a5b6f2aa64ec9240b0c185dabe597d0e787dc4344acfbaef1ffe0b2
MD5 2b41b505988c340b0b37d0ab039fe142
BLAKE2b-256 4a3bff94162e6b6430438e0f89ce509a36c628fd7917efbd00d9166bad253dc3

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a51514047b964047b7fadb480d88a5e0f72c02f6ca1ba96258fbbc6e79274a94
MD5 580ae71559483cacd3efe5e3f960340d
BLAKE2b-256 edfedf966d6693b69b02ee639799ff84e73e0d391e54ca1525843f23ce5c068b

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 93701da21fea906dd244bf88cdbe640385a89c45d3c1812b76dbadf8782cdbcd
MD5 29427422658676f381ad9b97c8512aa0
BLAKE2b-256 3929bb59ebb0133a1dc81cb5bd18db7e0f1a88c6140ae8a0b3c4234162ec43c4

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 542f1985b1ee279a92bef7740ec0781452372028ce01e15aa88df3228b197ba3
MD5 84429debce22e50d968f98352f8c3dbb
BLAKE2b-256 677e43e2282aa83ad4b2343d87fb71ec977b3e4751ce34105fc8e17871797b4b

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7d643c01d1cad13b9206a276bbe5bc1a468e3d7cf6a26bde7783f945277f859d
MD5 b2100f09ab996ced524e389c040b9060
BLAKE2b-256 6b64eef7781f06ab444b644b2a307272fc7ec159f4a0e53e1565c8c4e7ea936f

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f31533cdacced56219e239d3459a003ece35116920dd64b2309d4ad047b77644
MD5 a63e62e49618685ffe5d49dc297232a3
BLAKE2b-256 56df1e3e01dc9188ad8fb24104e296394960221419910b9f81c54b9695372382

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sentencepiece-0.1.97-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for sentencepiece-0.1.97-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 9b9a4c44a31d5f47616e9568dcf31e029b0bfa776e0a252c0b59247881598b09
MD5 de5346f98ba04a11294e2d35200b97fb
BLAKE2b-256 0e98dfca45df9df26d7a2aa71a610bdd582fd154cb31edb42edfbd842f99924a

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 93b921b59914c0ec6697e8c6d5e6b44d99d1298fb1a0af56980a79ade0540c19
MD5 cabe7cfb231c1588c620f59dffd87eab
BLAKE2b-256 d7e1169802f953bd3f5e3dcde6f746d8b833b6c23702f02e5f07908607c9a66e

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 620cee35279720016735a7c7103cddbd9b84fe5e2f098bd5e673834d69fee2b8
MD5 bf61f29ebdf555f715b6e95bf4fb213b
BLAKE2b-256 c97f0752ea759ffa06b4c3897c1b6e5e1b8c2796265a2da3fd43da00b79025fc

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4ad7262e7530c683b186672b5dd0082f82719a50a500a8cfbc4bbd7cde5bff8c
MD5 f1b5706a939b8b0416a50963802433dd
BLAKE2b-256 8f8789c4eae675c334e19bb5d337aeda4fea907a3c4122ec29887cdd31b73128

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 bae580e4a35a9314ff49561ac7c06574fe6afc71b821ed6bb00534e571458156
MD5 8b6ad05d83684460d997a3931a3703db
BLAKE2b-256 27b762843a27c8baf9bbe4e698c9558fb7a2c02adf4d58a5962b77ef0e0c7133

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 91a19ab6f40ffbae6d6127119953d2c6a85e93d734953dbc8629fde0d21ace66
MD5 51c70b4edd774f1d3fa8ab762d50c6ec
BLAKE2b-256 7d735cff6237ffed8fd68a17aa8593e7eff39d902e42c25c01d364cfb6bdaf41

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp36-cp36m-win32.whl.

File metadata

  • Download URL: sentencepiece-0.1.97-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.1 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.5

File hashes

Hashes for sentencepiece-0.1.97-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 ed85dff5c0a9b3dd1a414c7e1119f2a19e863fc3f81da525bf7f885ebc883de0
MD5 3be60ee65f75a18b33d95aa41fd77b16
BLAKE2b-256 ed555243d6fe8c2bd727c0a589c7f3fe589bfe677a15ef04c2f0b00d5125a2f3

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c6e12a166eba75994ca749aadc4a5056b91b31405f805d6de6e8914cc9741c60
MD5 f9cfa01fa109e039709f9e6b41347010
BLAKE2b-256 70f5791b87af00346c4d5b320ab90081e4cd7fd1f535ad0fedaf236a0122604c

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1c27400f1ac46518a01c87cb7703650e4e48728649feb115d2e3f1102a946a42
MD5 6d3ac7a413eb6703c95d97fb9aed6389
BLAKE2b-256 cb16c8a728d25a9dfb5aa94775079856e0e06404f96eb5e129389887f2e86ef6

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ac3d90aee5581e55d029d124ac11b6ae2fbae0817863b664b2f2302e966ababb
MD5 1edaa25b74a9e506a2d84f13c526935d
BLAKE2b-256 ef2fd16e242b978a51cadb83b37891d8335ae273deb3002d106d089dfd890ac0

See more details on using hashes here.

File details

Details for the file sentencepiece-0.1.97-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sentencepiece-0.1.97-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ba1b4154f9144c5a7528b00aff5cffaa1a896a1c6ca53ca78b6e74cd2dae5244
MD5 8f16cf411953d4ab06bac7025cb5f6a5
BLAKE2b-256 f2d2d51fadcc30b103fdbf8d5d67db2605d228066d934af5ee372a00fe8c1a2c

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page