Skip to main content

A small tool for sentiment analysis of texts.

Project description

# sentianalyse

A simple python library that generates sentiment type(positive,negetive,neutral) pie chart, percentage,number and ternary value for pandas dataframe text portion.

The code is Python 2 and 3 compatible.

# Installation

Fast install:

::

pip install sentianalyse

For a manual install get this package:

$wget https://github.com/garain/sentianalyse/archive/master.zip
$unzip master.zip
$rm master.zip
$cd sentianalyse-master

Install the package:

python setup.py install

# The library is pandas dataframe dependent.

:: Have to get dataframe(‘text columns’) and give to command. Like df[‘text’]

# Example

import sentianalyse as sa
        # Features

# - sentiment type pie chart :
sa.pie()


# sentiment type amount :
# - Get the sentiment type(postive,negetive,neutral numbers)
sa.number()


# sentiment percentage :
# - Get the percentage of sentiment type
sa.percentage()


# sa.ternary_analysis
# - Get the type of all text, here -1:negetive, 0:neutral, 1:positive
sa.ternary_analysis()


import pandas as pd

df=pd.read_csv("/home/samin/anaconda3/dataset_2.csv")

percent=at.percentage(df['text'])

print(percent)


number = sa.number(df['text'])

print(number)


analysis = sa.analysis_ternary(df['text'])

print(analysis)


#sa.pie(df['text'])

# Pass list of texts as input

        df=pd.DataFrame(["I love you very much."],columns=['text'])

Here is the output:

Positve : 33.31 %, Negetive 20.96 %, Neutral : 45.72 %
{'positive  ': 1087, 'negetive': 684, 'neutral': 1492}
    [-1, 1, 0.0, 0.0, 0.0, 0.0,.......,1]

Please cite these publications if this library comes to any use:

  • Ray, Biswarup, Avishek Garain, and Ram Sarkar. “An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews.” Applied Soft Computing 98 (2021): 106935.

  • Garain, Avishek, and Sainik Kumar Mahata. “Sentiment Analysis at SEPLN (TASS)-2019: Sentiment Analysis at Tweet Level Using Deep Learning.” (2019).

  • Garain, Avishek, and Arpan Basu. “The titans at SemEval-2019 task 5: Detection of hate speech against immigrants and women in twitter.” Proceedings of the 13th International Workshop on Semantic Evaluation. 2019.

  • Garain, Avishek. “Humor Analysis based on Human Annotation (HAHA)-2019: Humor Analysis at Tweet Level using Deep Learning.” (2019).

  • Garain, Avishek, and Arpan Basu. “The titans at SemEval-2019 task 6: Offensive language identification, categorization and target identification.” Proceedings of the 13th International Workshop on Semantic Evaluation. 2019.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sentianalyse-0.0.2.tar.gz (3.9 kB view details)

Uploaded Source

File details

Details for the file sentianalyse-0.0.2.tar.gz.

File metadata

  • Download URL: sentianalyse-0.0.2.tar.gz
  • Upload date:
  • Size: 3.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.6

File hashes

Hashes for sentianalyse-0.0.2.tar.gz
Algorithm Hash digest
SHA256 ae40aefa1624ffccd4b9429ac7057d2b56f4f3fe3b9a0220409dd27e0c21b1ee
MD5 c1f31f8148f91af30a37bda6246fe3ea
BLAKE2b-256 63df8f0acd1e4e53ba11dd9afa6491465dcba01150d20382778a2a89cc4ed232

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page