A small tool for sentiment analysis of texts.
Project description
# sentianalyse
A simple python library that generates sentiment type(positive,negetive,neutral) pie chart, percentage,number and ternary value for pandas dataframe text portion.
The code is Python 2 and 3 compatible.
# Installation
Fast install:
- ::
pip install sentianalyse
For a manual install get this package:
$wget https://github.com/garain/sentianalyse/archive/master.zip
$unzip master.zip
$rm master.zip
$cd sentianalyse-master
Install the package:
python setup.py install
# The library is pandas dataframe dependent.
:: Have to get dataframe(‘text columns’) and give to command. Like df[‘text’]
# Example
import sentianalyse as sa
# Features
# - sentiment type pie chart :
sa.pie()
# sentiment type amount :
# - Get the sentiment type(postive,negetive,neutral numbers)
sa.number()
# sentiment percentage :
# - Get the percentage of sentiment type
sa.percentage()
# sa.ternary_analysis
# - Get the type of all text, here -1:negetive, 0:neutral, 1:positive
sa.ternary_analysis()
import pandas as pd
df=pd.read_csv("/home/samin/anaconda3/dataset_2.csv")
percent=at.percentage(df['text'])
print(percent)
number = sa.number(df['text'])
print(number)
analysis = sa.analysis_ternary(df['text'])
print(analysis)
#sa.pie(df['text'])
# Pass list of texts as input
df=pd.DataFrame(["I love you very much."],columns=['text'])
Here is the output:
Positve : 33.31 %, Negetive 20.96 %, Neutral : 45.72 % {'positive ': 1087, 'negetive': 684, 'neutral': 1492} [-1, 1, 0.0, 0.0, 0.0, 0.0,.......,1]
Please cite these publications if this library comes to any use:
Ray, Biswarup, Avishek Garain, and Ram Sarkar. “An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews.” Applied Soft Computing 98 (2021): 106935.
Garain, Avishek, and Sainik Kumar Mahata. “Sentiment Analysis at SEPLN (TASS)-2019: Sentiment Analysis at Tweet Level Using Deep Learning.” (2019).
Garain, Avishek, and Arpan Basu. “The titans at SemEval-2019 task 5: Detection of hate speech against immigrants and women in twitter.” Proceedings of the 13th International Workshop on Semantic Evaluation. 2019.
Garain, Avishek. “Humor Analysis based on Human Annotation (HAHA)-2019: Humor Analysis at Tweet Level using Deep Learning.” (2019).
Garain, Avishek, and Arpan Basu. “The titans at SemEval-2019 task 6: Offensive language identification, categorization and target identification.” Proceedings of the 13th International Workshop on Semantic Evaluation. 2019.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file sentianalyse-0.0.2.tar.gz
.
File metadata
- Download URL: sentianalyse-0.0.2.tar.gz
- Upload date:
- Size: 3.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: Python-urllib/3.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ae40aefa1624ffccd4b9429ac7057d2b56f4f3fe3b9a0220409dd27e0c21b1ee
|
|
MD5 |
c1f31f8148f91af30a37bda6246fe3ea
|
|
BLAKE2b-256 |
63df8f0acd1e4e53ba11dd9afa6491465dcba01150d20382778a2a89cc4ed232
|