Skip to main content
This is a pre-production deployment of Warehouse. Changes made here affect the production instance of PyPI (
Help us improve Python packaging - Donate today!

Access Senticnet API using Python

Project Description

# Senticnet API

[![Image]( "DOI") ]( "DOI")

Simple API to use Senticnet 4 (

## Install

Using pip:

$ pip install senticnet

Using the repository code:

$ python install

## How to use

from senticnet.senticnet import Senticnet

sn = Senticnet()
concept_info = sn.concept('love')
polarity_value = sn.polarity_value('love')
polarity_intense = sn.polarity_intense('love')
moodtags = sn.moodtags('love')
semantics = sn.semantics('love')
sentics = sn.sentics('love')

Also, you can use other languages:

from senticnet.senticnet import Senticnet

sn = Senticnet('pt')
concept_info = sn.concept('amor')
polarity_value = sn.polarity_value('amor')
polarity_intense = sn.polarity_intense('amor')
moodtags = sn.moodtags('amor')
semantics = sn.semantics('amor')
sentics = sn.sentics('amor')

You can find all supported languages here:

## About Senticnet

SenticNet is an initiative conceived at the MIT Media Laboratory in 2010 within an industrial Cooperative Awards in Science and Engineering (CASE) research project, funded by the UK Engineering and Physical Sciences Research Council (EPSRC) and born from the collaboration between the University of Stirling, the Media Lab, and Sitekit Labs.

Currently, both the SenticNet knowledge base and the SenticNet framework are being maintained and further developed by the Sentic Team, a multidisciplinary research group based at the School of Computer Engineering of Nanyang Technological University in Singapore, but also by many other sentic enthusiasts around the world.

Please acknowledge the authors by citing SenticNet 4 in any research work or presentation containing results obtained in whole or in part through the use of the API:

*E. Cambria, S. Poria, R. Bajpai, and B. Schuller. SenticNet 4: A semantic resource for sentiment analysis based on conceptual primitives. In: COLING, pp. 2666-2677, Osaka (2016)*

Release History

This version
History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


History Node


Download Files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, Size & Hash SHA256 Hash Help File Type Python Version Upload Date
(50.9 MB) Copy SHA256 Hash SHA256
Source None Dec 26, 2016

Supported By

Elastic Elastic Search Pingdom Pingdom Monitoring Dyn Dyn DNS Sentry Sentry Error Logging CloudAMQP CloudAMQP RabbitMQ Heroku Heroku PaaS Kabu Creative Kabu Creative UX & Design Fastly Fastly CDN DigiCert DigiCert EV Certificate Google Google Cloud Servers