Skip to main content

Fast data structures for finding intersecting sets and similar strings

Project description

=====
setix
=====

At its core setix provides a "set intersection index", an inverted index data structure designed for storing sets
of symbols and fast querying of sets intersecting the given set, with sorting based on the number of intersections
or a similarity measure.

Additionally, a wrapper for indexing strings is provided in setix.trgm, which implements a trigram index compatible
with the PostgreSQL extension pg_trgm.

Examples
========

Using a set index:

.. code-block:: python

import setix

ix = setix.SetIntersectionIndex ()
ix.add ((1, 2, 3))
ix.add ((1, 2, 4))
ix.add ((2, 3, 4))

ix.find ((1, 2), 1).get_list()
# returns [(2, [(1, 2, 3)]),
# (2, [(1, 2, 4)]),
# (1, [(2, 3, 4)])]
# (the order of the first two results can change as they have equal scores)

Using a trigram index:

.. code-block:: python

import setix.trgm

ix = setix.trgm.TrigramIndex ()
ix.add ("strength")
ix.add ("strenght")
ix.add ("strength and honor")

ix.find ("stremgth", threshold=1).get_list()
# returns [(6, ["strength and honor"])
# (6, ["strength"]),
# (4, ["strenght"])]

ix.find_similar ("stremgth", threshold=0.1).get_list()
# returns [(0.5, ["strength"]), # 6 intersections / (9 total + 9 total - 6)
# (0.29, ["strenght"]), # 4 intersections / (9 total + 9 total - 4)
# (0.27, ["strength and honor"])] # 6 intersections / (9 total + 19 total - 6)

In general, to search for phrases containing a misspelt word, a threshold of -3*N can be given where N is the number
of misspellings.

.. code-block:: python

ix.find ("stremgth", threshold=-3).get_list()
# returns [(6, ["strength and honor"]),
# (6, ["strength"])]

Benchmarks
==========

A benchmark is included in tests/dvd_db_test.py

Results from an Athlon II running at 2.6GHz:

Python 2.7
----------------------

.. code-block:: none

In [1]: import tests.dvd_db_test
Loading database...
Extracted 240577 titles
Memory used by data: 107.8MB
Building index...
CPU time used: 43.1s
Unique trigrams indexed: 11352
Unique phrases indexed: 228620
Memory used by index: 80.9MB

In [2]: %timeit list (tests.dvd_db_test.titles.find("daft punk", 8))
10 loops, best of 3: 27.8 ms per loop

In [3]: %timeit list (tests.dvd_db_test.titles.find("daft punk", 1))
10 loops, best of 3: 86.4 ms per loop

Python 3.2
----------------------

.. code-block:: none

In [1]: import tests.dvd_db_test
Loading database...
Extracted 240577 titles
Memory used by data: 108.8MB
Building index...
CPU time used: 45.8s
Unique trigrams indexed: 11352
Unique phrases indexed: 228620
Memory used by index: 86.2MB

In [2]: %timeit list (tests.dvd_db_test.titles.find("daft punk", 8))
10 loops, best of 3: 27.9 ms per loop

In [3]: %timeit list (tests.dvd_db_test.titles.find("daft punk", 1))
10 loops, best of 3: 86.3 ms per loop

DVD title list used in the benchmark was obtained from http://www.hometheaterinfo.com/dvdlist.htm
Thanks for making it available.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Filename, size & hash SHA256 hash help File type Python version Upload date
setix-0.8.3.tar.gz (8.3 kB) Copy SHA256 hash SHA256 Source None Feb 3, 2014

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN DigiCert DigiCert EV certificate StatusPage StatusPage Status page