Skip to main content

Kernel Library for SGLang

Project description

sgl-kernel

Kernel Library for LLM inference engines

License: Apache-2.0 PyPI

sgl-kernel provides optimized compute primitives for LLM inference engines, enabling efficient inference for large language models and vision-language models through custom kernel operations. It has been used by LightLLM, SGLang and so on.

Installation

Requires torch == 2.9.1

# Latest version
pip3 install sgl-kernel --upgrade

Building from Source

Requires

  • CMake ≥3.31,
  • Python ≥3.10
  • scikit-build-core
  • ninja(optional)

Use Makefile to build sgl-kernel

make build

Limit build resource usage (CPU / parallelism)

By default, make build uses all available CPU cores. You can override build parallelism and NVCC compile threads:

# Limit parallel jobs (controls both make and cmake parallelism)
make build MAX_JOBS=2

# Additionally limit NVCC internal threads (reduces CPU and peak memory)
make build MAX_JOBS=2 CMAKE_ARGS="-DSGL_KERNEL_COMPILE_THREADS=1"

Contribution

Steps to add a new kernel:

  1. Implement the kernel in csrc
  2. Expose the interface in include/sgl_kernel_ops.h
  3. Create torch extension in csrc/common_extension.cc
  4. Update CMakeLists.txt to include new CUDA source
  5. Expose Python interface in python
  6. Add test and benchmark

Development Tips

  1. When creating torch extensions, add the function definition with m.def, and device binding with m.impl:
  • How to write schema: Schema reference

    // We need def with schema here for torch.compile
    m.def(
     "bmm_fp8(Tensor A, Tensor B, Tensor! D, Tensor A_scale, Tensor B_scale, Tensor workspace_buffer, "
     "int cublas_handle) -> ()");
    m.impl("bmm_fp8", torch::kCUDA, &bmm_fp8);
    

Adapting C++ Native Types for Torch Compatibility

Third-party C++ libraries often use int and float, but PyTorch bindings require int64_t and double due to Python's type mapping.

Use make_pytorch_shim from sgl_kernel_torch_shim.h to handle conversions automatically:

// Add type conversion for int -> int64_t
template <>
struct pytorch_library_compatible_type<int> {
  using type = int64_t;
  static int convert_from_type(int64_t arg) {
    TORCH_CHECK(arg <= std::numeric_limits<int>::max(), "value too large");
    TORCH_CHECK(arg >= std::numeric_limits<int>::min(), "value too small");
    return arg;
  }
};
// Wrap your function
m.impl("fwd", torch::kCUDA, make_pytorch_shim(&mha_fwd));

Testing & Benchmarking

  1. Add pytest tests in tests/, if you need to skip some test, please use @pytest.mark.skipif
@pytest.mark.skipif(
    skip_condition, reason="Nvfp4 Requires compute capability of 10 or above."
)
  1. Add benchmarks using triton benchmark in benchmark/

    We recommend using triton.testing.do_bench_cudagraph for kernel benchmarking:

    Compared to triton.testing.do_bench, do_bench_cudagraph provides:

    • Reduced CPU overhead impact for more accurate kernel performance measurements
    • Incorporation of PDL (Programmatic Dependent Launch) effects into individual kernel results
    • More realistic performance data on PDL-supported architectures (SM >= 90)
  2. Run test suite

Kernel Size Analysis

Analyze CUDA kernel sizes in compiled wheel files to identify oversized kernels and template-instantiation bloat:

This tool requires cubloaty (install with pip install cubloaty) to work.

# Install cubloaty
pip install cubloaty

# Analyze a wheel file
python analyze_whl_kernel_sizes.py path/to/sgl_kernel-*.whl

# Custom output file
python analyze_whl_kernel_sizes.py path/to/sgl_kernel-*.whl --output my_analysis.txt

The tool generates:

  • A text report with:
    • Kernel groups (by name prefix)
    • Individual kernel sizes (sorted by size)

Use this to identify large kernels and potential template instantiation bloat.

FAQ

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

sgl_kernel-0.3.21-cp310-abi3-manylinux2014_x86_64.whl (535.6 MB view details)

Uploaded CPython 3.10+

sgl_kernel-0.3.21-cp310-abi3-manylinux2014_aarch64.whl (626.6 MB view details)

Uploaded CPython 3.10+

File details

Details for the file sgl_kernel-0.3.21-cp310-abi3-manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sgl_kernel-0.3.21-cp310-abi3-manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 57dfb3a2a3cd759f499c32e2bad5f6489b7c58f7f9a84ee00c53ec92d303aaab
MD5 34c4c4bc34a343ec2cc304cc4a942710
BLAKE2b-256 369ff836e126002c7cfcfe35418f6cff5a63fe3f529c609b334ca4775354b4d5

See more details on using hashes here.

File details

Details for the file sgl_kernel-0.3.21-cp310-abi3-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sgl_kernel-0.3.21-cp310-abi3-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bafdcc26e9ce1e9102b99e4186d652fefbafe5c22ea2cbb5ffe07b331e83be1f
MD5 887c10b43f1be78574b18a5d92c1f336
BLAKE2b-256 eb2bf1aeca98bc856c14d870f1dcf38bca35cf84ffe58874c67402b0f862ed18

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page