Skip to main content

SGLang is a fast serving framework for large language models and vision language models.

Project description

logo

PyPI PyPI - Downloads license issue resolution open issues Ask DeepWiki


Blog | Documentation | Roadmap | Join Slack | Weekly Dev Meeting | Slides

News

  • [2025/12] SGLang provides day-0 support for latest open models (MiMo-V2-Flash, Nemotron 3 Nano, Mistral Large 3, LLaDA 2.0 Diffusion LLM, MiniMax M2).
  • [2025/11] 🔥 SGLang Diffusion accelerates video and image generation (blog).
  • [2025/10] 🔥 SGLang now runs natively on TPU with the SGLang-Jax backend (blog).
  • [2025/09] Deploying DeepSeek on GB200 NVL72 with PD and Large Scale EP (Part II): 3.8x Prefill, 4.8x Decode Throughput (blog).
  • [2025/09] SGLang Day 0 Support for DeepSeek-V3.2 with Sparse Attention (blog).
  • [2025/08] SGLang x AMD SF Meetup on 8/22: Hands-on GPU workshop, tech talks by AMD/xAI/SGLang, and networking (Roadmap, Large-scale EP, Highlights, AITER/MoRI, Wave).
  • [2025/08] SGLang provides day-0 support for OpenAI gpt-oss model (instructions)
  • [2025/05] Deploying DeepSeek with PD Disaggregation and Large-scale Expert Parallelism on 96 H100 GPUs (blog).
More
  • [2025/10] PyTorch Conference 2025 SGLang Talk (slide).
  • [2025/10] SGLang x Nvidia SF Meetup on 10/2 (recap).
  • [2025/06] SGLang, the high-performance serving infrastructure powering trillions of tokens daily, has been awarded the third batch of the Open Source AI Grant by a16z (a16z blog).
  • [2025/06] Deploying DeepSeek on GB200 NVL72 with PD and Large Scale EP (Part I): 2.7x Higher Decoding Throughput (blog).
  • [2025/03] Supercharge DeepSeek-R1 Inference on AMD Instinct MI300X (AMD blog)
  • [2025/03] SGLang Joins PyTorch Ecosystem: Efficient LLM Serving Engine (PyTorch blog)
  • [2025/02] Unlock DeepSeek-R1 Inference Performance on AMD Instinct™ MI300X GPU (AMD blog)
  • [2025/01] SGLang provides day one support for DeepSeek V3/R1 models on NVIDIA and AMD GPUs with DeepSeek-specific optimizations. (instructions, AMD blog, 10+ other companies)
  • [2024/12] v0.4 Release: Zero-Overhead Batch Scheduler, Cache-Aware Load Balancer, Faster Structured Outputs (blog).
  • [2024/10] The First SGLang Online Meetup (slides).
  • [2024/09] v0.3 Release: 7x Faster DeepSeek MLA, 1.5x Faster torch.compile, Multi-Image/Video LLaVA-OneVision (blog).
  • [2024/07] v0.2 Release: Faster Llama3 Serving with SGLang Runtime (vs. TensorRT-LLM, vLLM) (blog).
  • [2024/02] SGLang enables 3x faster JSON decoding with compressed finite state machine (blog).
  • [2024/01] SGLang provides up to 5x faster inference with RadixAttention (blog).
  • [2024/01] SGLang powers the serving of the official LLaVA v1.6 release demo (usage).

About

SGLang is a high-performance serving framework for large language models and multimodal models. It is designed to deliver low-latency and high-throughput inference across a wide range of setups, from a single GPU to large distributed clusters. Its core features include:

  • Fast Runtime: Provides efficient serving with RadixAttention for prefix caching, a zero-overhead CPU scheduler, prefill-decode disaggregation, speculative decoding, continuous batching, paged attention, tensor/pipeline/expert/data parallelism, structured outputs, chunked prefill, quantization (FP4/FP8/INT4/AWQ/GPTQ), and multi-LoRA batching.
  • Broad Model Support: Supports a wide range of language models (Llama, Qwen, DeepSeek, Kimi, GLM, GPT, Gemma, Mistral, etc.), embedding models (e5-mistral, gte, mcdse), reward models (Skywork), and diffusion models (WAN, Qwen-Image), with easy extensibility for adding new models. Compatible with most Hugging Face models and OpenAI APIs.
  • Extensive Hardware Support: Runs on NVIDIA GPUs (GB200/B300/H100/A100/Spark), AMD GPUs (MI355/MI300), Intel Xeon CPUs, Google TPUs, Ascend NPUs, and more.
  • Active Community: SGLang is open-source and supported by a vibrant community with widespread industry adoption, powering over 400,000 GPUs worldwide.

Getting Started

Benchmark and Performance

Learn more in the release blogs: v0.2 blog, v0.3 blog, v0.4 blog, Large-scale expert parallelism, GB200 rack-scale parallelism.

Adoption and Sponsorship

SGLang has been deployed at large scale, generating trillions of tokens in production each day. It is trusted and adopted by a wide range of leading enterprises and institutions, including xAI, AMD, NVIDIA, Intel, LinkedIn, Cursor, Oracle Cloud, Google Cloud, Microsoft Azure, AWS, Atlas Cloud, Voltage Park, Nebius, DataCrunch, Novita, InnoMatrix, MIT, UCLA, the University of Washington, Stanford, UC Berkeley, Tsinghua University, Jam & Tea Studios, Baseten, and other major technology organizations across North America and Asia. As an open-source LLM inference engine, SGLang has become the de facto industry standard, with deployments running on over 400,000 GPUs worldwide. SGLang is currently hosted under the non-profit open-source organization LMSYS.

logo

Contact Us

For enterprises interested in adopting or deploying SGLang at scale, including technical consulting, sponsorship opportunities, or partnership inquiries, please contact us at sglang@lmsys.org

Acknowledgment

We learned the design and reused code from the following projects: Guidance, vLLM, LightLLM, FlashInfer, Outlines, and LMQL.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sglang-0.5.8.post1.tar.gz (3.4 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

sglang-0.5.8.post1-py3-none-any.whl (4.4 MB view details)

Uploaded Python 3

File details

Details for the file sglang-0.5.8.post1.tar.gz.

File metadata

  • Download URL: sglang-0.5.8.post1.tar.gz
  • Upload date:
  • Size: 3.4 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for sglang-0.5.8.post1.tar.gz
Algorithm Hash digest
SHA256 332f568fed2c600f385528a269e7e404f3749d7027b5d49486b11e7c72e61de4
MD5 f1038804314ed027c7ad824afb1739f6
BLAKE2b-256 44ad9a71037f07a330264c1d503a018f0429e6f09cc82cc183ead3e5c82901c9

See more details on using hashes here.

File details

Details for the file sglang-0.5.8.post1-py3-none-any.whl.

File metadata

  • Download URL: sglang-0.5.8.post1-py3-none-any.whl
  • Upload date:
  • Size: 4.4 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.10.19

File hashes

Hashes for sglang-0.5.8.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 3fe5ddf6d8b47b234bb192737eb52c94e76282bf910b1185e020f88ec7367e6e
MD5 42cedc4367ac998a57488ebd25a0f0cf
BLAKE2b-256 c76685ac18f08cfe01141dcdc46248cee29e8a068b3f5b57cc815d9b6d2eddd2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page