Skip to main content

Semi-supervised machine learning for PyTorch.

Project description


Build Status Coverage Status Documentation Status Downloads

Shadow is a PyTorch based library for semi-supervised machine learning. The shadow python 3 package includes implementations of Virtual Adversarial Training, Mean Teacher, and Exponential Averaging Adversarial Training. Semi-supervised learning enables training a model (gold dashed line) from both labeled (red and blue) and unlabeled (grey) data, and is typically used in contexts in which labels are expensive to obtain but unlabeled examples are plentiful.

SSML for half moons

For more information, go to


Shadow can by installed directly from pypi as:

pip install shadow-ssml

Citing Shadow

  • Linville, L., Anderson, D., Michalenko, J., Galasso, J., & Draelos, T. (2021). Semisupervised Learning for Seismic Monitoring Applications. Seismological Society of America, 92(1), 388-395. doi:


Revised BSD. See the LICENSE.txt file.


Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.


Copyright 2019, National Technology & Engineering Solutions of Sandia, LLC (NTESS). Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights in this software.

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

shadow-ssml-1.0.3.tar.gz (14.5 kB view hashes)

Uploaded source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page