Skip to main content

No project description provided

Project description

Supported functions

Real-time Speech recognition Speech synthesis Voice activity detection
✔️ ✔️ ✔️

Supported platforms

Architecture Android iOS Windows macOS linux
x64 ✔️ ✔️ ✔️ ✔️
x86 ✔️ ✔️
arm64 ✔️ ✔️ ✔️ ✔️ ✔️
arm32 ✔️ ✔️
riscv64 ✔️

Supported programming languages

1. C++ 2. C 3. Python 4. JavaScript
✔️ ✔️ ✔️ ✔️
5. Go 6. C# 7. Kotlin 8. Swift
✔️ ✔️ ✔️ ✔️

It also supports WebAssembly.

Introduction

This repository supports running the following functions locally

  • Streaming speech-to-text (i.e., real-time speech recognition)
  • Text to speech (e.g., vits models from piper)
  • VAD (e.g., silero-vad)

on the following platforms and operating systems:

with the following APIs

  • C++, C, Python, Go, C#
  • Kotlin
  • JavaScript
  • Swift

We support all platforms that ncnn supports.

Everything can be compiled from source with static link. The generated executable depends only on system libraries.

HINT: It does not depend on PyTorch or any other inference frameworks other than ncnn.

Please see the documentation https://k2-fsa.github.io/sherpa/ncnn/index.html for installation and usages, e.g.,

  • How to build an Android app
  • How to download and use pre-trained models

We provide a few YouTube videos for demonstration about real-time speech recognition with sherpa-ncnn using a microphone:

Links for pre-built Android APKs

Description URL
Streaming speech recognition Address

Links for pre-trained models

https://github.com/k2-fsa/sherpa-ncnn/releases/tag/models

Useful links

How to reach us

Please see https://k2-fsa.github.io/sherpa/social-groups.html for 新一代 Kaldi 微信交流群 and QQ 交流群.

See also

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sherpa-ncnn-2.1.15.tar.gz (143.9 kB view details)

Uploaded Source

Built Distributions

If you're not sure about the file name format, learn more about wheel file names.

sherpa_ncnn-2.1.15-cp314-cp314-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.14Windows x86-64

sherpa_ncnn-2.1.15-cp314-cp314-win32.whl (1.9 MB view details)

Uploaded CPython 3.14Windows x86

sherpa_ncnn-2.1.15-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ x86-64

sherpa_ncnn-2.1.15-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.14manylinux: glibc 2.17+ ARM64

sherpa_ncnn-2.1.15-cp314-cp314-macosx_10_13_universal2.whl (2.2 MB view details)

Uploaded CPython 3.14macOS 10.13+ universal2 (ARM64, x86-64)

sherpa_ncnn-2.1.15-cp313-cp313-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.13Windows x86-64

sherpa_ncnn-2.1.15-cp313-cp313-win32.whl (1.9 MB view details)

Uploaded CPython 3.13Windows x86

sherpa_ncnn-2.1.15-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

sherpa_ncnn-2.1.15-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

sherpa_ncnn-2.1.15-cp313-cp313-macosx_10_13_universal2.whl (2.2 MB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

sherpa_ncnn-2.1.15-cp312-cp312-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.12Windows x86-64

sherpa_ncnn-2.1.15-cp312-cp312-win32.whl (1.9 MB view details)

Uploaded CPython 3.12Windows x86

sherpa_ncnn-2.1.15-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

sherpa_ncnn-2.1.15-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

sherpa_ncnn-2.1.15-cp312-cp312-macosx_10_13_universal2.whl (2.2 MB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

sherpa_ncnn-2.1.15-cp311-cp311-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.11Windows x86-64

sherpa_ncnn-2.1.15-cp311-cp311-win32.whl (1.9 MB view details)

Uploaded CPython 3.11Windows x86

sherpa_ncnn-2.1.15-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

sherpa_ncnn-2.1.15-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

sherpa_ncnn-2.1.15-cp311-cp311-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

sherpa_ncnn-2.1.15-cp311-cp311-linux_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.11

sherpa_ncnn-2.1.15-cp310-cp310-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.10Windows x86-64

sherpa_ncnn-2.1.15-cp310-cp310-win32.whl (1.9 MB view details)

Uploaded CPython 3.10Windows x86

sherpa_ncnn-2.1.15-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

sherpa_ncnn-2.1.15-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

sherpa_ncnn-2.1.15-cp310-cp310-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

sherpa_ncnn-2.1.15-cp310-cp310-linux_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.10

sherpa_ncnn-2.1.15-cp39-cp39-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.9Windows x86-64

sherpa_ncnn-2.1.15-cp39-cp39-win32.whl (1.9 MB view details)

Uploaded CPython 3.9Windows x86

sherpa_ncnn-2.1.15-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

sherpa_ncnn-2.1.15-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

sherpa_ncnn-2.1.15-cp39-cp39-macosx_10_9_universal2.whl (2.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

sherpa_ncnn-2.1.15-cp39-cp39-linux_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.9

sherpa_ncnn-2.1.15-cp38-cp38-win_amd64.whl (2.2 MB view details)

Uploaded CPython 3.8Windows x86-64

sherpa_ncnn-2.1.15-cp38-cp38-win32.whl (1.9 MB view details)

Uploaded CPython 3.8Windows x86

sherpa_ncnn-2.1.15-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

sherpa_ncnn-2.1.15-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (2.3 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

sherpa_ncnn-2.1.15-cp38-cp38-macosx_10_15_universal2.whl (2.2 MB view details)

Uploaded CPython 3.8macOS 10.15+ universal2 (ARM64, x86-64)

sherpa_ncnn-2.1.15-cp38-cp38-linux_armv7l.whl (1.3 MB view details)

Uploaded CPython 3.8

File details

Details for the file sherpa-ncnn-2.1.15.tar.gz.

File metadata

  • Download URL: sherpa-ncnn-2.1.15.tar.gz
  • Upload date:
  • Size: 143.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for sherpa-ncnn-2.1.15.tar.gz
Algorithm Hash digest
SHA256 39bf5be8f4ad11d51552d609ac70641fd411f0b8c122771f85e546f6398e69fb
MD5 339b46584ef06ea48aa59e09dcca87b1
BLAKE2b-256 924528eaa999f969df58e38782bb73a512d701aeda8e714862efbc78509131ec

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp314-cp314-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp314-cp314-win_amd64.whl
Algorithm Hash digest
SHA256 2ce73f28e6e5a7d132d24f617132b4176bcf1feeca85f24e429c574275be43e5
MD5 5b5adb1164dacf7008dac62ba090275e
BLAKE2b-256 ec1a5d7370ccc27ed0c0eab287b9e5036fe93737b4aef567bc8475de83f1d0c7

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp314-cp314-win32.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp314-cp314-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.14, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp314-cp314-win32.whl
Algorithm Hash digest
SHA256 ecfec6f209a0fffc7348f28172fa27f350e6a65f78a62563175932c9961f7f78
MD5 624a540a02e27dbd9801e3be6a27e044
BLAKE2b-256 b7c0201f2f23ffe3e51a03720f41b7fe6fef2f3ef1909cc51d4e6f335cceeda0

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 5faea9c673ed8545ec23ec016a57983981f39e8e4ebaafc6236b03dc0b149a8d
MD5 edf6d776b0c24fa7218f053802689f40
BLAKE2b-256 91be04d6089ddead7f5adb17d0565cc40542ba4405a694c4377004e31ea7d5aa

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 28658ae155ad90c8a71f4f5be7d8ee1d7d49b4492960ef4d321c32e97fee0aaa
MD5 891ec37c2f947c4404ebe8d7be15076f
BLAKE2b-256 14718c60774cec18b1d4130f5ed220eeb75f7e9fe2b3f83805d66a24f919eff5

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp314-cp314-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp314-cp314-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 bc08735a41c51eee92d13c2b284f1d0770e9ae4c2e59b369e844767ee2ca0c76
MD5 ad3a081d8f02bcc981a13a093f353dcc
BLAKE2b-256 f755e764dc30e05d08df1b88eff84e405b95cb069d94c4bf9274d370b36e8d4b

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 caa5b768460f392aaf1d383847abac27f4729b4d8fe6cdc9c453a349f9c9c12d
MD5 f116cf7d9ee2298168bc75c057b18900
BLAKE2b-256 c7243f10a45587dfa5a1180210423c7220842cf16874aa391e56d28b000c7176

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp313-cp313-win32.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp313-cp313-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 e27ea7120ce815e900a15e54c4a0955da68fbb5605cbd2b201b35b2548f0a36d
MD5 3674cd9df9fb4daa580b093facf48472
BLAKE2b-256 075f515168cbc94b3941a256b1ff19ef0a34bbbbb3d1b9521ac60b24d8a86b1c

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 d86254324a4476f0ce678f4043e81198c2fb77a1631d01fdd752085659b2fa00
MD5 ff57b414793986e753e5d32b8063b600
BLAKE2b-256 d314df31d089b62f64de3b6eb222be6651be73f69e278127beea5998e31cd1fa

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 a8a71b34b6d4ea0962f343965c6d98f48066ac820d46fce91fb0392a89496439
MD5 412fda24534bec0de18c51c63eacc4fb
BLAKE2b-256 1a5f27e399d7730ff9303ddaee2da90422280bf0e1ca92bc757d887d63e30df3

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 23c4ebc02385d35576a98db0625aefa483b6b1068b842fb5f5d60e5912486201
MD5 6e111b442b1590c89395c5f38dad3400
BLAKE2b-256 648eed315c9039c390d3c567dfe58f5aab2b136c30127122d4555cc2e53bc25f

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 06e88a1b929430c039cad0ae6760c868ba52fd3af15d1049757d7e26e1bbe6f3
MD5 604feb16b90578e076ea07f7ce35c38b
BLAKE2b-256 d22b70cb6f3ae519fe496c183fd2a9a4fd6b2fc124eb2032dd137751224e2f28

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp312-cp312-win32.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 24ab87a56e08f4e7cc31e8269dca6d58c72aabd44fd2f56324c624cea1fe1ba9
MD5 422469807ddf4e71001291d5ef0e39b1
BLAKE2b-256 c85f503932e23bac946016917be0987771556ed8848ed1c20ba4dc20ec04e5b4

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 b09d37d02e312981038e7c08ce698b3edcfe9764a1fa8b59b028f19b4a8a50f4
MD5 97a5f3add8af00679a7c9336a4cd6ad6
BLAKE2b-256 f471667bca8a680ac041327fb540811e384fd1cf10a1e983f1c1714a937a8685

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 f507ff59204f153a1abd8f4d75fdd88bda27cec704829732f1956be2727e3f29
MD5 b1ab561379170d41c2b703353d344088
BLAKE2b-256 9a14748ae97b2d6af34a1d2de0ae3f925b2606c98f467dd59e1cd5576445d2bb

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 bfcb8cd05a40c72c4f01f15f3559e8517e86397b635cb3c91320d4fe7247953a
MD5 68cfebe55534975dc3ff033eb5d60b0a
BLAKE2b-256 64f7aed24247e11b3af409c9d12caabe3e914cdaaa3868c26dfbb1163c8870f0

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3cba9274ca1f3dd6ed1382cbdc7a742fef03e4c3bcd87c369e161f316c252c62
MD5 baf4f327042bab390618520af5ab9f20
BLAKE2b-256 abb21a7f5d10e45081d14b8e8c620807410ff958817fee35b08ee59128ebd553

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp311-cp311-win32.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 c4896898da19ccaf0857af91220d61df4c750669d3cbc0d30a60ad50942c36fa
MD5 bb094902a47a86d4e69c16e24d94b3d8
BLAKE2b-256 09610a97eefba2d2acca549b362f0b8e05926188210457f77ba5a2dd8e84cdfb

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 df8248842270de747e416bd032d02f9925239231762e2aca1e57514502ea4833
MD5 53333f2312502fe9b4a05b42d931ca0b
BLAKE2b-256 f2ca5cfe51f3a366ba59d73ba9ebb203303ab0ac9ee05964016a639add26bba7

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 d4bf2efe33b5a8d44b0eaec3a52aa93be57656c3e9df8fdf09e79f6b8df8de87
MD5 73bfcee55c6255741a5391f91d63ce4b
BLAKE2b-256 e8a70f4d962f7725034572a7afa6bfee003258c3adef8360af5df33d9cd61362

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5ed5ab1040fbf81fe470924c413b274d1c5e1d17f3a969e05985d77a1a98c97e
MD5 07dd8d12a9f6d59fe86136304522348f
BLAKE2b-256 7469d6fa3e2c21d404a38a127c6de59a0b9a2de6dd75da1f6adb1691629c4d02

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp311-cp311-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp311-cp311-linux_armv7l.whl
Algorithm Hash digest
SHA256 464ab9a72d210b03f457655a64a347db305076ee85e8d955be623716363a79cd
MD5 17ea3edc32e81b2b504f4b365bf79d5d
BLAKE2b-256 20f5b0a946309b7cd631a76e83d90e7def0899dcf479cdeca9354141a221ce6b

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e925945c6334995f96fb962d5208dc1f9e3240fe5dc6e66193c09567b362e17e
MD5 503da4e78e15cbe65de8a4e43fd56546
BLAKE2b-256 1b26c944ddda91599027a76c0739463acf2f1b20c007e9ed30001a0d8ec42f5e

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp310-cp310-win32.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 2a8ccf9e86e77018375b169cefe1b69d9fad2b0db4ed2ccb5f67375cbb106b91
MD5 d239996101019458e1c217bbc5351c17
BLAKE2b-256 4227dd37c763f1ee589300b0e90592759db8470392f66d559e348532c5130f5b

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 58c457101344ad4124005c368f010a1cec04f9ee48870aee403a39c530840582
MD5 ba1aca6b0f3a7758004a3d385ad9099d
BLAKE2b-256 a154c494fd3d367dd801ce71986ffec4264d88d504ce5ac184cbbc02f0999691

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 2d333d257078ced76d036a44c502252552fd218aa39f1aa1cdb7959b99242c66
MD5 1ec96641e25cdf121cf1a85dba8fc4d4
BLAKE2b-256 780b603dcce89ffddd7a0c556c15ae3b7fdbfc1f70ebf76bcaeedc9c29e2e72a

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 57e1a36ab4230e9a69f445a4917a0f56578f908a7f1ad3a70eef1c5ade0e74ec
MD5 5c7a85914c4cdc2cdb1145f8981e3c32
BLAKE2b-256 37533b88c578baeaefe383151be5a5aa6ad38f0425a0412d48a81b4cf1d4ac76

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp310-cp310-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp310-cp310-linux_armv7l.whl
Algorithm Hash digest
SHA256 ec7941ee53eb10232a22c8374ddd16d2618abff4789c139a9244c4f51a3ac4ea
MD5 a1c5fa025d6211ae437cc3a880e50db7
BLAKE2b-256 24a959325719152c0c2b020da8b100c44e60ad42635a89ca666da54ac962cb9f

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 032c61729f3d259b2e31773a07e6a621f38c5f11f9f2427e4aa2ead9a59ec0b7
MD5 583686379bc320471b3ef2b61b00457c
BLAKE2b-256 92549baac234071f580d3fdcd615f214a90505ea4a45238b6a8821804c72fdd5

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp39-cp39-win32.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 db8f2b0136a8770056ef3fb7ef6f2823845fb12b0d975b872c2e13b1b9d27ea4
MD5 fd05e8582cddc039fad59c27ccfcbc31
BLAKE2b-256 93a46c686a2a71247b53be848105c96c628bd0d8cf7a76df976d0807b37fc405

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 39f7ba8da23668b909fa928eb3990adb8033ad9f67b021c23e3e9d8b74fac025
MD5 17bc0eb6b07031fc9cab4753387118f4
BLAKE2b-256 79bc223790c3999edf2317c8236ffaf99588a686bd02d66b8c4b01a048ceff56

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 1664d4c7bb5e1cd6e51c63b8a9534556b870070fac1088a1be04399bec189e76
MD5 a78d1d2cd30a39c98d1df4d4b68a6a27
BLAKE2b-256 58fab7d8b11d70d3e2af0d82b5aff10f689ae3ff133bbe876e1a9104ccc5a7c7

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 367abc812065eda4325139cec7f605048816374d1d6921dc3a034a1a3e2b34a3
MD5 4f8aad909de765be7603f7c86ba0043b
BLAKE2b-256 9cae21f56e737964860754c50fb2c53ffb7873a4202796bfd1c050d1b65c905d

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp39-cp39-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp39-cp39-linux_armv7l.whl
Algorithm Hash digest
SHA256 2da92bff477ae5a16cbe501330ddee673fd3eb6cd7e20856585a297724f0ac76
MD5 e40f042b7b8f7ea11fbeb183718fd3d2
BLAKE2b-256 bf84127ccd2cbe214bf39cf50335ddb8765234b16f4b606f0d32ae368f953c54

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.2 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8095e31d0df6e31b49a7c6b75184d4e6c3fdc2ebdc1284d760b3820cd7cb39db
MD5 c47b3fb6d601a53a85fdd5fe9ca3ea69
BLAKE2b-256 44920eaca37986d848dd3c3ccdbf10d348a4eb38fa42719f6059cff5f6822a78

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp38-cp38-win32.whl.

File metadata

  • Download URL: sherpa_ncnn-2.1.15-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_ncnn-2.1.15-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 f56da0644889a7aafb1647084826d6f709c0cfe67ea4e3a8e9a01941058b85bf
MD5 962b9e48123bf682303ed35025fe5d13
BLAKE2b-256 af587e4c76bbc427c17700112294dc615ea173f91654432c5b926a242b0e50f5

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 dff7efe82f750afca7f5ccebb7d8b950acb473a7b6d71811392915cd45c630d4
MD5 c2f6cef4de81c34659403ebcefdc2541
BLAKE2b-256 a2509dcd81d153aa286b692b4f238c3f06fbaeb917371d230ecad6d4b0d8ead5

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 71172966b0b5ef7773d7249560c3930afe14fa938e2165ab661ba2293765fd13
MD5 e750f0a993521cf1fe3b3ad34fbd91a6
BLAKE2b-256 fccdc1d3b6215e16306a7969ce38ca19fbe9ff66013f27b60356672b705baa2c

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp38-cp38-macosx_10_15_universal2.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp38-cp38-macosx_10_15_universal2.whl
Algorithm Hash digest
SHA256 607f216dace0030a68c17c9fb0949579e9637f46d76034778bf6c06b513ee52e
MD5 9328188bf4400ed9b1f43e727b768f81
BLAKE2b-256 2d83754df6273ff97f7d6210eb133bfbfacac6dd58fc56406fcf4cd6bc4ccb13

See more details on using hashes here.

File details

Details for the file sherpa_ncnn-2.1.15-cp38-cp38-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_ncnn-2.1.15-cp38-cp38-linux_armv7l.whl
Algorithm Hash digest
SHA256 a7525a7f42a514112c5490d11d475fa559c374ffe520f558841cee6a414502ab
MD5 5a290df679133c477126471f9d7b4175
BLAKE2b-256 851e72175a4f62dbd5c384cfddc9d7b6d43a82e0023169c915d13a7d9ca7a7b4

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page