No project description provided
Project description
Supported functions
Speech recognition | Speech synthesis | Source separation |
---|---|---|
✔️ | ✔️ | ✔️ |
Speaker identification | Speaker diarization | Speaker verification |
---|---|---|
✔️ | ✔️ | ✔️ |
Spoken Language identification | Audio tagging | Voice activity detection |
---|---|---|
✔️ | ✔️ | ✔️ |
Keyword spotting | Add punctuation | Speech enhancement |
---|---|---|
✔️ | ✔️ | ✔️ |
Supported platforms
Architecture | Android | iOS | Windows | macOS | linux | HarmonyOS |
---|---|---|---|---|---|---|
x64 | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | |
x86 | ✔️ | ✔️ | ||||
arm64 | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ | ✔️ |
arm32 | ✔️ | ✔️ | ✔️ | |||
riscv64 | ✔️ |
Supported programming languages
1. C++ | 2. C | 3. Python | 4. JavaScript |
---|---|---|---|
✔️ | ✔️ | ✔️ | ✔️ |
5. Java | 6. C# | 7. Kotlin | 8. Swift |
---|---|---|---|
✔️ | ✔️ | ✔️ | ✔️ |
9. Go | 10. Dart | 11. Rust | 12. Pascal |
---|---|---|---|
✔️ | ✔️ | ✔️ | ✔️ |
For Rust support, please see sherpa-rs
It also supports WebAssembly.
Introduction
This repository supports running the following functions locally
- Speech-to-text (i.e., ASR); both streaming and non-streaming are supported
- Text-to-speech (i.e., TTS)
- Speaker diarization
- Speaker identification
- Speaker verification
- Spoken language identification
- Audio tagging
- VAD (e.g., silero-vad)
- Speech enhancement (e.g., gtcrn)
- Keyword spotting
- Source separation (e.g., spleeter, UVR)
on the following platforms and operating systems:
- x86,
x86_64
, 32-bit ARM, 64-bit ARM (arm64, aarch64), RISC-V (riscv64), RK NPU - Linux, macOS, Windows, openKylin
- Android, WearOS
- iOS
- HarmonyOS
- NodeJS
- WebAssembly
- NVIDIA Jetson Orin NX (Support running on both CPU and GPU)
- NVIDIA Jetson Nano B01 (Support running on both CPU and GPU)
- Raspberry Pi
- RV1126
- LicheePi4A
- VisionFive 2
- 旭日X3派
- 爱芯派
- RK3588
- etc
with the following APIs
- C++, C, Python, Go,
C#
- Java, Kotlin, JavaScript
- Swift, Rust
- Dart, Object Pascal
Links for Huggingface Spaces
You can visit the following Huggingface spaces to try sherpa-onnx without installing anything. All you need is a browser.
Description | URL | 中国镜像 |
---|---|---|
Speaker diarization | Click me | 镜像 |
Speech recognition | Click me | 镜像 |
Speech recognition with Whisper | Click me | 镜像 |
Speech synthesis | Click me | 镜像 |
Generate subtitles | Click me | 镜像 |
Audio tagging | Click me | 镜像 |
Source separation | Click me | 镜像 |
Spoken language identification with Whisper | Click me | 镜像 |
We also have spaces built using WebAssembly. They are listed below:
Description | Huggingface space | ModelScope space |
---|---|---|
Voice activity detection with silero-vad | Click me | 地址 |
Real-time speech recognition (Chinese + English) with Zipformer | Click me | 地址 |
Real-time speech recognition (Chinese + English) with Paraformer | Click me | 地址 |
Real-time speech recognition (Chinese + English + Cantonese) with Paraformer-large | Click me | 地址 |
Real-time speech recognition (English) | Click me | 地址 |
VAD + speech recognition (Chinese) with Zipformer CTC | Click me | 地址 |
VAD + speech recognition (Chinese + English + Korean + Japanese + Cantonese) with SenseVoice | Click me | 地址 |
VAD + speech recognition (English) with Whisper tiny.en | Click me | 地址 |
VAD + speech recognition (English) with Moonshine tiny | Click me | 地址 |
VAD + speech recognition (English) with Zipformer trained with GigaSpeech | Click me | 地址 |
VAD + speech recognition (Chinese) with Zipformer trained with WenetSpeech | Click me | 地址 |
VAD + speech recognition (Japanese) with Zipformer trained with ReazonSpeech | Click me | 地址 |
VAD + speech recognition (Thai) with Zipformer trained with GigaSpeech2 | Click me | 地址 |
VAD + speech recognition (Chinese 多种方言) with a TeleSpeech-ASR CTC model | Click me | 地址 |
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-large | Click me | 地址 |
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-small | Click me | 地址 |
VAD + speech recognition (多语种及多种中文方言) with Dolphin-base | Click me | 地址 |
Speech synthesis (English) | Click me | 地址 |
Speech synthesis (German) | Click me | 地址 |
Speaker diarization | Click me | 地址 |
Links for pre-built Android APKs
You can find pre-built Android APKs for this repository in the following table
Description | URL | 中国用户 |
---|---|---|
Speaker diarization | Address | 点此 |
Streaming speech recognition | Address | 点此 |
Simulated-streaming speech recognition | Address | 点此 |
Text-to-speech | Address | 点此 |
Voice activity detection (VAD) | Address | 点此 |
VAD + non-streaming speech recognition | Address | 点此 |
Two-pass speech recognition | Address | 点此 |
Audio tagging | Address | 点此 |
Audio tagging (WearOS) | Address | 点此 |
Speaker identification | Address | 点此 |
Spoken language identification | Address | 点此 |
Keyword spotting | Address | 点此 |
Links for pre-built Flutter APPs
Real-time speech recognition
Description | URL | 中国用户 |
---|---|---|
Streaming speech recognition | Address | 点此 |
Text-to-speech
Description | URL | 中国用户 |
---|---|---|
Android (arm64-v8a, armeabi-v7a, x86_64) | Address | 点此 |
Linux (x64) | Address | 点此 |
macOS (x64) | Address | 点此 |
macOS (arm64) | Address | 点此 |
Windows (x64) | Address | 点此 |
Note: You need to build from source for iOS.
Links for pre-built Lazarus APPs
Links for pre-trained models
Description | URL |
---|---|
Speech recognition (speech to text, ASR) | Address |
Text-to-speech (TTS) | Address |
VAD | Address |
Keyword spotting | Address |
Audio tagging | Address |
Speaker identification (Speaker ID) | Address |
Spoken language identification (Language ID) | See multi-lingual Whisper ASR models from Speech recognition |
Punctuation | Address |
Speaker segmentation | Address |
Speech enhancement | Address |
Source separation | Address |
Some pre-trained ASR models (Streaming)
Please see
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-transducer/index.html
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-paraformer/index.html
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/online-ctc/index.html
for more models. The following table lists only SOME of them.
Name | Supported Languages | Description |
---|---|---|
sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20 | Chinese, English | See also |
sherpa-onnx-streaming-zipformer-small-bilingual-zh-en-2023-02-16 | Chinese, English | See also |
sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23 | Chinese | Suitable for Cortex A7 CPU. See also |
sherpa-onnx-streaming-zipformer-en-20M-2023-02-17 | English | Suitable for Cortex A7 CPU. See also |
sherpa-onnx-streaming-zipformer-korean-2024-06-16 | Korean | See also |
sherpa-onnx-streaming-zipformer-fr-2023-04-14 | French | See also |
Some pre-trained ASR models (Non-Streaming)
Please see
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-transducer/index.html
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-paraformer/index.html
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/offline-ctc/index.html
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/telespeech/index.html
- https://k2-fsa.github.io/sherpa/onnx/pretrained_models/whisper/index.html
for more models. The following table lists only SOME of them.
Name | Supported Languages | Description |
---|---|---|
sherpa-onnx-nemo-parakeet-tdt-0.6b-v2-int8 | English | It is converted from https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2 |
Whisper tiny.en | English | See also |
Moonshine tiny | English | See also |
sherpa-onnx-zipformer-ctc-zh-int8-2025-07-03 | Chinese | A Zipformer CTC model |
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17 | Chinese, Cantonese, English, Korean, Japanese | 支持多种中文方言. See also |
sherpa-onnx-paraformer-zh-2024-03-09 | Chinese, English | 也支持多种中文方言. See also |
sherpa-onnx-zipformer-ja-reazonspeech-2024-08-01 | Japanese | See also |
sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24 | Russian | See also |
sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24 | Russian | See also |
sherpa-onnx-zipformer-ru-2024-09-18 | Russian | See also |
sherpa-onnx-zipformer-korean-2024-06-24 | Korean | See also |
sherpa-onnx-zipformer-thai-2024-06-20 | Thai | See also |
sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04 | Chinese | 支持多种方言. See also |
Useful links
- Documentation: https://k2-fsa.github.io/sherpa/onnx/
- Bilibili 演示视频: https://search.bilibili.com/all?keyword=%E6%96%B0%E4%B8%80%E4%BB%A3Kaldi
How to reach us
Please see https://k2-fsa.github.io/sherpa/social-groups.html for 新一代 Kaldi 微信交流群 and QQ 交流群.
Projects using sherpa-onnx
BreezeApp from MediaTek Research
BreezeAPP is a mobile AI application developed for both Android and iOS platforms. Users can download it directly from the App Store and enjoy a variety of features offline, including speech-to-text, text-to-speech, text-based chatbot interactions, and image question-answering
1 | 2 | 3 |
---|---|---|
Open-LLM-VTuber
Talk to any LLM with hands-free voice interaction, voice interruption, and Live2D taking face running locally across platforms
See also https://github.com/t41372/Open-LLM-VTuber/pull/50
voiceapi
Streaming ASR and TTS based on FastAPI
It shows how to use the ASR and TTS Python APIs with FastAPI.
腾讯会议摸鱼工具 TMSpeech
Uses streaming ASR in C# with graphical user interface.
Video demo in Chinese: 【开源】Windows实时字幕软件(网课/开会必备)
lol互动助手
It uses the JavaScript API of sherpa-onnx along with Electron
Video demo in Chinese: 爆了!炫神教你开打字挂!真正影响胜率的英雄联盟工具!英雄联盟的最后一块拼图!和游戏中的每个人无障碍沟通!
Sherpa-ONNX 语音识别服务器
A server based on nodejs providing Restful API for speech recognition.
QSmartAssistant
一个模块化,全过程可离线,低占用率的对话机器人/智能音箱
It uses QT. Both ASR and TTS are used.
Flutter-EasySpeechRecognition
It extends ./flutter-examples/streaming_asr by downloading models inside the app to reduce the size of the app.
Note: [Team B] Sherpa AI backend also uses sherpa-onnx in a Flutter APP.
sherpa-onnx-unity
sherpa-onnx in Unity. See also #1695, #1892, and #1859
xiaozhi-esp32-server
本项目为xiaozhi-esp32提供后端服务,帮助您快速搭建ESP32设备控制服务器 Backend service for xiaozhi-esp32, helps you quickly build an ESP32 device control server.
See also
KaithemAutomation
Pure Python, GUI-focused home automation/consumer grade SCADA.
It uses TTS from sherpa-onnx. See also ✨ Speak command that uses the new globally configured TTS model.
Open-XiaoAI KWS
Enable custom wake word for XiaoAi Speakers. 让小爱音箱支持自定义唤醒词。
Video demo in Chinese: 小爱同学启动~˶╹ꇴ╹˶!
C++ WebSocket ASR Server
It provides a WebSocket server based on C++ for ASR using sherpa-onnx.
Go WebSocket Server
It provides a WebSocket server based on the Go programming language for sherpa-onnx.
Making robot Paimon, Ep10 "The AI Part 1"
It is a YouTube video, showing how the author tried to use AI so he can have a conversation with Paimon.
It uses sherpa-onnx for speech-to-text and text-to-speech.
1 |
---|
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
File details
Details for the file sherpa-onnx-1.12.5.tar.gz
.
File metadata
- Download URL: sherpa-onnx-1.12.5.tar.gz
- Upload date:
- Size: 557.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c146a7de2667d43d3cc9a93f3bbb007e74c5b566da099b7a2452d9b1f85562c5
|
|
MD5 |
8c7bfe9319ec8fe3422c5edb28129cb1
|
|
BLAKE2b-256 |
f6713c02a08fa06c2a77c3e60d6c8063180efdfb4a3f46362f05f9ddd27f535d
|
File details
Details for the file sherpa_onnx-1.12.5-cp313-cp313-win_amd64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp313-cp313-win_amd64.whl
- Upload date:
- Size: 24.5 MB
- Tags: CPython 3.13, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c40a04294ce98997d726036f048ef2d48ac1caecbd5206df45141b7b0ec1f7ea
|
|
MD5 |
ea95b1550c06c9a8a0141bb0a85eb0f3
|
|
BLAKE2b-256 |
508c9ed4f6228633c6b9e773fc194014e3385d112b89f61ba726eef922694490
|
File details
Details for the file sherpa_onnx-1.12.5-cp313-cp313-win32.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp313-cp313-win32.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.13, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ee4692b35f5fde541a284a2a9f51aa50d9d98b0039d41ff251e9f7381b20e0ae
|
|
MD5 |
3e6976a055fe4a49629dcece3da81b00
|
|
BLAKE2b-256 |
823da61d442defc618c002957a1310cfa1ddb802eae4fa1baea5ff7b74bf759f
|
File details
Details for the file sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
- Upload date:
- Size: 25.1 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
44c3cd94bcc0eee75ad40197706eb81f0df7fa5c3c1dbefb429e572759f1b42e
|
|
MD5 |
e0bb143bcfbadf5ba597ff8c85a77b42
|
|
BLAKE2b-256 |
fa24e95889b8b0441fed1b8df1b3bd8661b7e9f4923fa08ffce257a364e8c99e
|
File details
Details for the file sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Upload date:
- Size: 23.2 MB
- Tags: CPython 3.13, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
53f5b160b7bf069b9f463b80eeae90d4a44e9d9b066cbb270101a33c236e4663
|
|
MD5 |
2afbc5dd8eec6c721378a724b9646fc0
|
|
BLAKE2b-256 |
fd406262c1afe4e1f882ce94c48555b8aa46dffb987290de4ed6a670165409f3
|
File details
Details for the file sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_x86_64.whl
- Upload date:
- Size: 21.0 MB
- Tags: CPython 3.13, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
36ddadc0b581069536fc61fa293752751080c01bd561076985cf45091fbb0106
|
|
MD5 |
f44cc6d70e29829ff8048aae3290b3ad
|
|
BLAKE2b-256 |
ebafc5f8815ec2c30bbc5eca6abaadf297aaf87023f5848c32c13816fb22853f
|
File details
Details for the file sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_universal2.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_universal2.whl
- Upload date:
- Size: 39.3 MB
- Tags: CPython 3.13, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f066bfe2ac98918ebbeab781634d3efcabecf8894f85a199a6957cce580f4e60
|
|
MD5 |
2c1ff4801906824217de3587f2a1467e
|
|
BLAKE2b-256 |
1bd73297e6fbf85dfb77b0b90819aff703b3467a79258aaaad1b30d81b1bba3f
|
File details
Details for the file sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_arm64.whl
- Upload date:
- Size: 18.4 MB
- Tags: CPython 3.13, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7cfcb46506b6f57fc938908ef66a0b32b1688bcad5c2b9d18ccfc3144238f4ce
|
|
MD5 |
7056878f1098f61d215d5ca75b358ad1
|
|
BLAKE2b-256 |
ed942592f71e0dc8fc42cf789239b9890ddb4e02619c141353550f5fa143e9c6
|
File details
Details for the file sherpa_onnx-1.12.5-cp312-cp312-win_amd64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp312-cp312-win_amd64.whl
- Upload date:
- Size: 24.5 MB
- Tags: CPython 3.12, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f172cc9a324dd6804bdef3c3fcecdd5739dce203ade94c6978020d6a878812ae
|
|
MD5 |
b4a99dea57e6703a8f7a7966e154f515
|
|
BLAKE2b-256 |
7ab169ee0212fe0ee2cb936aa67ac829067da2ed9ff828789b9cb936f6bc6f9b
|
File details
Details for the file sherpa_onnx-1.12.5-cp312-cp312-win32.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp312-cp312-win32.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.12, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
df858f746cfdc1dc61bf291a025a838b5971356851f1bcdd791d91b28b51f469
|
|
MD5 |
3d44b3d3de9a88ba865c128e42fb90ed
|
|
BLAKE2b-256 |
b4545cdcd3f74f62d96654a1d384b01b32f74f97aa6120f398748d856695429a
|
File details
Details for the file sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
- Upload date:
- Size: 25.1 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
3202db15b2d2ddb5b205ac35336d79cd3bb26bd2e0f40504adac8f8722ea5359
|
|
MD5 |
797d0b27618172faaab31cc6148fd927
|
|
BLAKE2b-256 |
a4f5b617fa8c556e58448b8c85f2688bfc3f78e6fff0b05cf5651dd5f0aaac4b
|
File details
Details for the file sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Upload date:
- Size: 23.2 MB
- Tags: CPython 3.12, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d15ad53faa2af0dbda64f20bc2089e1bf94363722330526282ffc5c16a5f410a
|
|
MD5 |
dda040bb1bfb8ff62d6825cb11f56c84
|
|
BLAKE2b-256 |
1e5ea17391f7033810209566615d03c6f88cb3b6ed8052c497a175d44d6d549a
|
File details
Details for the file sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_x86_64.whl
- Upload date:
- Size: 21.0 MB
- Tags: CPython 3.12, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
4500fb4a8a5f082ab87119bd6b3eaebb5cca34afd64e38f8b784775fb84f15b8
|
|
MD5 |
e52377a34b1262d55ad0e784525f9495
|
|
BLAKE2b-256 |
405d873bb373de0fab37a20e8fcf4bc691a4ce579ddd340ef2e4221c001bbde7
|
File details
Details for the file sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_universal2.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_universal2.whl
- Upload date:
- Size: 39.3 MB
- Tags: CPython 3.12, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
40a5dad24a116a5175dc93822cea1e602fa2572770aa80bf6de7c8635f72ac8a
|
|
MD5 |
7b6a49cafd22a1be0ddfab966cf09768
|
|
BLAKE2b-256 |
f31c897bdd0132a74bc5ad2f136761af4540bf2171f17b3ad3637b5c67cfcdb1
|
File details
Details for the file sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_arm64.whl
- Upload date:
- Size: 18.4 MB
- Tags: CPython 3.12, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
4e1edbb3277a65c5bda59ab4604eb1b03363a580318627fddd79f048c8f7be9d
|
|
MD5 |
c3a758f4c23c351e9aaf1ddcfb16a128
|
|
BLAKE2b-256 |
49e557e126d450313bd6c293d2c2a22f84327d7b87010e71bfff1c0bc9ad841d
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-win_amd64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-win_amd64.whl
- Upload date:
- Size: 24.5 MB
- Tags: CPython 3.11, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.11.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
2671df464e97da6112d5f5ba24617b9f671f597a32658e113ebd11b66c8a9613
|
|
MD5 |
661e7acd04809b6fbf37e2de1552ca74
|
|
BLAKE2b-256 |
8d8ff81a1f00aa4ef5f7ff81ea7d43c5bcdc81c961469d4eff624c7ed680ca02
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-win32.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-win32.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.11, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e1ee7d50ce080e41a42c33c5ecc7cfb7305c15397dc1b8afe83369b3692297a9
|
|
MD5 |
3a352f66f51572636199a26251165e4a
|
|
BLAKE2b-256 |
3436d71c99ffd0df04658e6a429c5ad183816470152a8a9d2bb67dc09ac38646
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
- Upload date:
- Size: 25.1 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
3995ae2ecd63c211de52782fd5471f5acd4c6b507d31dec57ac0d309dc833391
|
|
MD5 |
ce7c53724f81593ffac664564fc84cf6
|
|
BLAKE2b-256 |
025bdb1524008d32ed01e74ee752185213f580505969293ec8b3fb71726a72ab
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Upload date:
- Size: 23.2 MB
- Tags: CPython 3.11, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d0d5924a4e72494df1f05d1b9ce23ac18f91a3aa77a16bc7409601169cb0f6a6
|
|
MD5 |
b9ae8e44864a5e2469fc10bc816dd1b3
|
|
BLAKE2b-256 |
1fdadb278c15bcdf93bca9ffc67f10e09d3bbc083af69eaec7fc90b751f4d849
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_x86_64.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.11, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ebc8736b6a460b8fd84ce1d72ddc61065ad5ac1f6e1d7baf5794e39ffda2528c
|
|
MD5 |
5795fe239dcdda5ba96eb9c5bc15e1ee
|
|
BLAKE2b-256 |
7b4959f68ed6bd57a652059d567f1ff8557513e0a66a753e0f82744728ef2c92
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_universal2.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_universal2.whl
- Upload date:
- Size: 39.3 MB
- Tags: CPython 3.11, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
75aa4f3514b18dbbd302e627275b9a68d8af7b04b5e9c5951485f658bffba344
|
|
MD5 |
4063ee4ee18335dc3c9dc6f3bd2a0323
|
|
BLAKE2b-256 |
a356a37f82f7512ddae6b4402363d489fc62d66c6d3b7e2cdbae2ce48d6b5f7d
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_arm64.whl
- Upload date:
- Size: 18.4 MB
- Tags: CPython 3.11, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.13.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
499817b58975fc6c5127ffeaa1c56cf5d9fb5badf0e42b4b9b9383a520d4fa41
|
|
MD5 |
81ebafd94279a5d7837eb474ce6db909
|
|
BLAKE2b-256 |
7e883ddb1cbc3895d35e71e3f1b5de74d8323a6188dc740a713b6bf6924ed6d7
|
File details
Details for the file sherpa_onnx-1.12.5-cp311-cp311-linux_armv7l.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp311-cp311-linux_armv7l.whl
- Upload date:
- Size: 16.4 MB
- Tags: CPython 3.11
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
bb71ac13d6388c86a7a31df7d01fc611cd8cc39915b6236eaa6bdc72596da563
|
|
MD5 |
605545a1d9e2c5c92062ed5e7644c952
|
|
BLAKE2b-256 |
7b3e1132499e2dee849ebcd0fca01d6bcda9f47086f50d54ba7305924285f93b
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-win_amd64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-win_amd64.whl
- Upload date:
- Size: 24.5 MB
- Tags: CPython 3.10, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7e8fcdac48fec93a66cce6a78902447c1dfdf0423e97feab1cc37e69531314d7
|
|
MD5 |
7b0435b07121837b12a21896f4e56371
|
|
BLAKE2b-256 |
f6d11c21ae7a808fcd51c5408bb6ebfc7e9af5e367a856346b4d47812526970b
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-win32.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-win32.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.10, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
1164d09e4dc8bceddb74b25f994b6f509630fd92a845b075473d2c6022aa787a
|
|
MD5 |
c07c76f80fc82626fe22febd7e3f7ffc
|
|
BLAKE2b-256 |
bd544bc46664cf2c916912c3f1f03134b3f40cf91dff46b7e3237d77e4b9df9d
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
- Upload date:
- Size: 25.1 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
99f819b671a557801c10fb4944d6e321cc0faec26341f10c119ac2b44e2444b1
|
|
MD5 |
3baa5b7917431d9b7f5e9ffaebf34d19
|
|
BLAKE2b-256 |
ebf49f00868224e13790ca9217313d87f9b0b24d1bde5993b492dcc5a2880e85
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Upload date:
- Size: 23.2 MB
- Tags: CPython 3.10, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
13ce6aa0a6549aecd2b8f6562ecdb95eb813ad9b7eb13e19ebf97b9282729960
|
|
MD5 |
4e3c18c24438fc833aba430776496e66
|
|
BLAKE2b-256 |
b626429c33117c96ce60094dd1ee9f91d09ba6e0d4238985dd881ab345888633
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_x86_64.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.10, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e0fde725bbd1be2cba97f02aabca7dfbcd6a51e89da405970c255121881f4e9b
|
|
MD5 |
4ac96f428bd4f1deff46b3070de9a10a
|
|
BLAKE2b-256 |
bcfe1c137ffd593502b308885dc789311edb44408807f12e1a655dabc5886cc8
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_universal2.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_universal2.whl
- Upload date:
- Size: 39.3 MB
- Tags: CPython 3.10, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f7a71d361b291af7e0d1f2444c3f8b91df58e787c1d519d32894e0233950277b
|
|
MD5 |
243585851fad1971e906785b2162047d
|
|
BLAKE2b-256 |
f48d446aa4d651844fc8ff50a92232e0767f8b0a849a3f778db59eb85ed430ef
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_arm64.whl
- Upload date:
- Size: 18.4 MB
- Tags: CPython 3.10, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.11
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ab615c1cc6f03ff9ce07239769928668955753d752c041ec9e5f1f28b42da28a
|
|
MD5 |
bd44d5208b73a2671bc4c240d15708bb
|
|
BLAKE2b-256 |
216bf5854c5b119feab81f6f0a305ce704e28586fbf00bf905ab6c22b1acd15f
|
File details
Details for the file sherpa_onnx-1.12.5-cp310-cp310-linux_armv7l.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp310-cp310-linux_armv7l.whl
- Upload date:
- Size: 16.4 MB
- Tags: CPython 3.10
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
de3f4ec7fcc466aa8c34b6ca43cbdc7b6d793e7d5ff9070f9e99b67a8799aa7f
|
|
MD5 |
4d9ef17f8ac43aac84365ecd69a4fa1a
|
|
BLAKE2b-256 |
cf8923e8d15ba25c3b41d55f918db5b39277c0c6e4a191066c78950e99c00a91
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-win_amd64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-win_amd64.whl
- Upload date:
- Size: 24.5 MB
- Tags: CPython 3.9, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
aba1d43aee557c705305a430c02100e1ecf133aee46b2baca3066cf3df1bdafe
|
|
MD5 |
67a9f205648190ac4a7addba01bebdb2
|
|
BLAKE2b-256 |
96f83c91b2e9723decfe0716e9962a75c9b7bf8326f52dd49dbba902b08c02b0
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-win32.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-win32.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.9, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
d7e06748f9202e3bb7ad618c2ff3dd066d569c5d5ed92e484554a1230da3b84f
|
|
MD5 |
83e21c802f7b7074e76cf0aecbd34d13
|
|
BLAKE2b-256 |
e2df67af3f2329f6cebc50b3c52a4e74bb56cca58594e7deb923a12087d62a4c
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
- Upload date:
- Size: 25.1 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
156fef286553a3a635b031068781850c4b8fb2b39c16121bc1b9dc0da736930b
|
|
MD5 |
bacef275cdcbc951262ecf8f9a82b0ac
|
|
BLAKE2b-256 |
b10302815ce5f9fe7fd0f38cbed860d73f934688dd047dfd7dc3a94a8b6bf8a9
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Upload date:
- Size: 23.2 MB
- Tags: CPython 3.9, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
215593195e62c3093b9769a73b220f1ae443062080c0acea279d741e1733d8da
|
|
MD5 |
69160ebb54ad0496f7e1fb088365110d
|
|
BLAKE2b-256 |
587476849348ef1e86398726c7e07a218b7237a63719427b74dc3280c7de2bee
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_x86_64.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.9, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
26ab724e7a1f7c679fe7fb2686d0a32831cf1efff606f5049e0edbfed90accb0
|
|
MD5 |
91ebc50dfc083c1638647d3f78002d6c
|
|
BLAKE2b-256 |
862996ed1135beafc91d395d322f318d1c7637d13fa6da5f3cde9bcb61433fae
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_universal2.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_universal2.whl
- Upload date:
- Size: 39.3 MB
- Tags: CPython 3.9, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
03987c56a03b97ae79843efa3ffe3c8c3c81de0d391ca9f2a43c6083ed17edc3
|
|
MD5 |
0fabd60f19551e3db0a726e44022747e
|
|
BLAKE2b-256 |
901689c88f56f08857745028f9ee7b3c0227d9bcbe5976b9b4be97019610bbe1
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_arm64.whl
- Upload date:
- Size: 18.4 MB
- Tags: CPython 3.9, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
c9a635b7b766ae172547083b0cbb40de9bb86bb7c10e4bd8451c99f3467fb87d
|
|
MD5 |
43e3eb5d5078e0fb2d445917ca77b717
|
|
BLAKE2b-256 |
bcb15d020fa7da20d56a71465952c1c4ee1ea143fa1bb823cb6a7b09cbbf4a7d
|
File details
Details for the file sherpa_onnx-1.12.5-cp39-cp39-linux_armv7l.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp39-cp39-linux_armv7l.whl
- Upload date:
- Size: 16.4 MB
- Tags: CPython 3.9
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
44daeb97c575e692b95f7d7e0251086ecbcb1bbade603027aa0f91d22078d30f
|
|
MD5 |
b8cc073e89f7a9e7978e59f62dd501a2
|
|
BLAKE2b-256 |
e632ddbb3b7e0966899185196ecd540935d617e4a2ba0ee84bae6b5a4447a5fe
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-win_amd64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-win_amd64.whl
- Upload date:
- Size: 24.5 MB
- Tags: CPython 3.8, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
dc8011b9e9a6e82d65a4cab5474e874f894064d8c183e90fade836e4ae6ff958
|
|
MD5 |
2293a2b14d7bb423860a69475ef6d2cc
|
|
BLAKE2b-256 |
0c96866318965cc16e7d5bb6c93bfcebb119176a8c598b7008e935ae0eb50225
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-win32.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-win32.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.8, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
e22c2b139f8f50daf7618b9903b6a3d88d6a2a63e42f49d76d8722de391cdb4d
|
|
MD5 |
bed9649a51e9bb967c164995005c152a
|
|
BLAKE2b-256 |
1e83928c9b8cf732ab0e1cf062cd17aa472fc051841c7a3579125dd7ee68e913
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
- Upload date:
- Size: 25.1 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
32284e79efccab87f8406b2ef03ee038a67822986a560f705e9df81b2713e51f
|
|
MD5 |
4ad8b9a7c80f21eb5ea086e17e658c65
|
|
BLAKE2b-256 |
bb3d24241f79d8031a16df921b8a4028c5e1a2d7837c01d5c7c07e6ff1e06e74
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
- Upload date:
- Size: 23.2 MB
- Tags: CPython 3.8, manylinux: glibc 2.17+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.10.12
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
37273b9fc8ccb314546d843fd2c40c176bd0f6bece345c718e1396e2c1d3446a
|
|
MD5 |
3f8ef7adf1367625eca5bda64845deb0
|
|
BLAKE2b-256 |
488808f6549ec856a78b457326c153068a460daa25cb14913f0fe3651ad0a8fd
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_x86_64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_x86_64.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.8, macOS 11.0+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7f12e9cc510d6c79ca6dd21c526f1caf70de21f6f5e290ea5665d2d122c17474
|
|
MD5 |
aadf506092e683ec8d08d70de16967d4
|
|
BLAKE2b-256 |
efbb1f50cdd3ee1f9f1a112929d2ed1df8db70ec22af010eb3ef64ee19222499
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_universal2.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_universal2.whl
- Upload date:
- Size: 39.3 MB
- Tags: CPython 3.8, macOS 11.0+ universal2 (ARM64, x86-64)
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
0b091f68fce46f7c7e9e93ef1fb648b4712c5b74f3b382818f8ef15fa8aa33db
|
|
MD5 |
cd4dc738a18bfc39c29412000bb15622
|
|
BLAKE2b-256 |
8fdfc40da52dc12f0439fac6447899fd540db7134fce5af554b9b8124aee8a27
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_arm64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_arm64.whl
- Upload date:
- Size: 18.4 MB
- Tags: CPython 3.8, macOS 11.0+ ARM64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
7ccc6766452185e8b29505d5b3a844494f66bb3e5dc9308ae381d048a8d5746f
|
|
MD5 |
c0a87438ece49b5ed316099d85a3b373
|
|
BLAKE2b-256 |
52708851a6fbde868ea640670c60855e84d97e776b9b95ad1a80491b4306cfde
|
File details
Details for the file sherpa_onnx-1.12.5-cp38-cp38-linux_armv7l.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp38-cp38-linux_armv7l.whl
- Upload date:
- Size: 16.4 MB
- Tags: CPython 3.8
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
5b0d1c3bbd9b2a40b650e5ab02d016c90925e641c6e116c0c78bccfd44639e37
|
|
MD5 |
b42e7d7a57c8f0d16f85f1f40e99b8b4
|
|
BLAKE2b-256 |
3d5f8d797fd56a55ce5efa070e2b894991e8c5d19b70d4482977ec1f1fbaf1fd
|
File details
Details for the file sherpa_onnx-1.12.5-cp37-cp37m-win_amd64.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp37-cp37m-win_amd64.whl
- Upload date:
- Size: 24.4 MB
- Tags: CPython 3.7m, Windows x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
f34b1f1438256f291700aaa90f3df23f5c32711a93b37d99d531619e3c9728ec
|
|
MD5 |
62803e42d4cc8c7a80ee885beb1d62f0
|
|
BLAKE2b-256 |
3f2748b98d3f539925950116dd56e0680b8c330886c4fbdee1d1d2145840d50b
|
File details
Details for the file sherpa_onnx-1.12.5-cp37-cp37m-win32.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp37-cp37m-win32.whl
- Upload date:
- Size: 20.9 MB
- Tags: CPython 3.7m, Windows x86
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
ba30b85cdbe99fdbac2fd0d3d0ad6b0c4da03412aad9e823a26394df2fc11046
|
|
MD5 |
ccfceeebbdfbf25e8b20e243ad1983c1
|
|
BLAKE2b-256 |
3aea93cbad80b39c955a12e0f1d35d9349d0d737bc8f38ac75c1693e0683dae3
|
File details
Details for the file sherpa_onnx-1.12.5-cp37-cp37m-linux_armv7l.whl
.
File metadata
- Download URL: sherpa_onnx-1.12.5-cp37-cp37m-linux_armv7l.whl
- Upload date:
- Size: 16.5 MB
- Tags: CPython 3.7m
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.12.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
a19284acc0d44571d6e953c400c2b35aa4c986cb041f6a396dc0b2797258f451
|
|
MD5 |
bf3b76ccd2ae2d9a9a4c4c9e3b32ea92
|
|
BLAKE2b-256 |
43a0ca5df6b50cafc4f36f3330f521b1061be6397569d264813b1aef750b7b7d
|