Skip to main content

No project description provided

Project description

Supported functions

Speech recognition Speech synthesis
✔️ ✔️
Speaker identification Speaker diarization Speaker verification
✔️ ✔️ ✔️
Spoken Language identification Audio tagging Voice activity detection
✔️ ✔️ ✔️
Keyword spotting Add punctuation Speech enhancement
✔️ ✔️ ✔️

Supported platforms

Architecture Android iOS Windows macOS linux HarmonyOS
x64 ✔️ ✔️ ✔️ ✔️ ✔️
x86 ✔️ ✔️
arm64 ✔️ ✔️ ✔️ ✔️ ✔️ ✔️
arm32 ✔️ ✔️ ✔️
riscv64 ✔️

Supported programming languages

1. C++ 2. C 3. Python 4. JavaScript
✔️ ✔️ ✔️ ✔️
5. Java 6. C# 7. Kotlin 8. Swift
✔️ ✔️ ✔️ ✔️
9. Go 10. Dart 11. Rust 12. Pascal
✔️ ✔️ ✔️ ✔️

For Rust support, please see sherpa-rs

It also supports WebAssembly.

Introduction

This repository supports running the following functions locally

  • Speech-to-text (i.e., ASR); both streaming and non-streaming are supported
  • Text-to-speech (i.e., TTS)
  • Speaker diarization
  • Speaker identification
  • Speaker verification
  • Spoken language identification
  • Audio tagging
  • VAD (e.g., silero-vad)
  • Keyword spotting

on the following platforms and operating systems:

with the following APIs

  • C++, C, Python, Go, C#
  • Java, Kotlin, JavaScript
  • Swift, Rust
  • Dart, Object Pascal

Links for Huggingface Spaces

You can visit the following Huggingface spaces to try sherpa-onnx without installing anything. All you need is a browser.
Description URL
Speaker diarization Click me
Speech recognition Click me
Speech recognition with Whisper Click me
Speech synthesis Click me
Generate subtitles Click me
Audio tagging Click me
Spoken language identification with Whisper Click me

We also have spaces built using WebAssembly. They are listed below:

Description Huggingface space ModelScope space
Voice activity detection with silero-vad Click me 地址
Real-time speech recognition (Chinese + English) with Zipformer Click me 地址
Real-time speech recognition (Chinese + English) with Paraformer Click me 地址
Real-time speech recognition (Chinese + English + Cantonese) with Paraformer-large Click me 地址
Real-time speech recognition (English) Click me 地址
VAD + speech recognition (Chinese + English + Korean + Japanese + Cantonese) with SenseVoice Click me 地址
VAD + speech recognition (English) with Whisper tiny.en Click me 地址
VAD + speech recognition (English) with Moonshine tiny Click me 地址
VAD + speech recognition (English) with Zipformer trained with GigaSpeech Click me 地址
VAD + speech recognition (Chinese) with Zipformer trained with WenetSpeech Click me 地址
VAD + speech recognition (Japanese) with Zipformer trained with ReazonSpeech Click me 地址
VAD + speech recognition (Thai) with Zipformer trained with GigaSpeech2 Click me 地址
VAD + speech recognition (Chinese 多种方言) with a TeleSpeech-ASR CTC model Click me 地址
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-large Click me 地址
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-small Click me 地址
VAD + speech recognition (多语种及多种中文方言) with Dolphin-base Click me 地址
Speech synthesis (English) Click me 地址
Speech synthesis (German) Click me 地址
Speaker diarization Click me 地址

Links for pre-built Android APKs

You can find pre-built Android APKs for this repository in the following table
Description URL 中国用户
Speaker diarization Address 点此
Streaming speech recognition Address 点此
Text-to-speech Address 点此
Voice activity detection (VAD) Address 点此
VAD + non-streaming speech recognition Address 点此
Two-pass speech recognition Address 点此
Audio tagging Address 点此
Audio tagging (WearOS) Address 点此
Speaker identification Address 点此
Spoken language identification Address 点此
Keyword spotting Address 点此

Links for pre-built Flutter APPs

Real-time speech recognition

Description URL 中国用户
Streaming speech recognition Address 点此

Text-to-speech

Description URL 中国用户
Android (arm64-v8a, armeabi-v7a, x86_64) Address 点此
Linux (x64) Address 点此
macOS (x64) Address 点此
macOS (arm64) Address 点此
Windows (x64) Address 点此

Note: You need to build from source for iOS.

Links for pre-built Lazarus APPs

Generating subtitles

Description URL 中国用户
Generate subtitles (生成字幕) Address 点此

Links for pre-trained models

Description URL
Speech recognition (speech to text, ASR) Address
Text-to-speech (TTS) Address
VAD Address
Keyword spotting Address
Audio tagging Address
Speaker identification (Speaker ID) Address
Spoken language identification (Language ID) See multi-lingual Whisper ASR models from Speech recognition
Punctuation Address
Speaker segmentation Address
Speech enhancement Address

Some pre-trained ASR models (Streaming)

Please see

for more models. The following table lists only SOME of them.

Name Supported Languages Description
sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20 Chinese, English See also
sherpa-onnx-streaming-zipformer-small-bilingual-zh-en-2023-02-16 Chinese, English See also
sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23 Chinese Suitable for Cortex A7 CPU. See also
sherpa-onnx-streaming-zipformer-en-20M-2023-02-17 English Suitable for Cortex A7 CPU. See also
sherpa-onnx-streaming-zipformer-korean-2024-06-16 Korean See also
sherpa-onnx-streaming-zipformer-fr-2023-04-14 French See also

Some pre-trained ASR models (Non-Streaming)

Please see

for more models. The following table lists only SOME of them.

Name Supported Languages Description
Whisper tiny.en English See also
Moonshine tiny English See also
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17 Chinese, Cantonese, English, Korean, Japanese 支持多种中文方言. See also
sherpa-onnx-paraformer-zh-2024-03-09 Chinese, English 也支持多种中文方言. See also
sherpa-onnx-zipformer-ja-reazonspeech-2024-08-01 Japanese See also
sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24 Russian See also
sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24 Russian See also
sherpa-onnx-zipformer-ru-2024-09-18 Russian See also
sherpa-onnx-zipformer-korean-2024-06-24 Korean See also
sherpa-onnx-zipformer-thai-2024-06-20 Thai See also
sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04 Chinese 支持多种方言. See also

Useful links

How to reach us

Please see https://k2-fsa.github.io/sherpa/social-groups.html for 新一代 Kaldi 微信交流群 and QQ 交流群.

Projects using sherpa-onnx

Open-LLM-VTuber

Talk to any LLM with hands-free voice interaction, voice interruption, and Live2D taking face running locally across platforms

See also https://github.com/t41372/Open-LLM-VTuber/pull/50

voiceapi

Streaming ASR and TTS based on FastAPI

It shows how to use the ASR and TTS Python APIs with FastAPI.

腾讯会议摸鱼工具 TMSpeech

Uses streaming ASR in C# with graphical user interface.

Video demo in Chinese: 【开源】Windows实时字幕软件(网课/开会必备)

lol互动助手

It uses the JavaScript API of sherpa-onnx along with Electron

Video demo in Chinese: 爆了!炫神教你开打字挂!真正影响胜率的英雄联盟工具!英雄联盟的最后一块拼图!和游戏中的每个人无障碍沟通!

Sherpa-ONNX 语音识别服务器

A server based on nodejs providing Restful API for speech recognition.

QSmartAssistant

一个模块化,全过程可离线,低占用率的对话机器人/智能音箱

It uses QT. Both ASR and TTS are used.

Flutter-EasySpeechRecognition

It extends ./flutter-examples/streaming_asr by downloading models inside the app to reduce the size of the app.

Note: [Team B] Sherpa AI backend also uses sherpa-onnx in a Flutter APP.

sherpa-onnx-unity

sherpa-onnx in Unity. See also #1695, #1892, and #1859

xiaozhi-esp32-server

本项目为xiaozhi-esp32提供后端服务,帮助您快速搭建ESP32设备控制服务器 Backend service for xiaozhi-esp32, helps you quickly build an ESP32 device control server.

See also

KaithemAutomation

Pure Python, GUI-focused home automation/consumer grade SCADA.

It uses TTS from sherpa-onnx. See also ✨ Speak command that uses the new globally configured TTS model.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sherpa-onnx-1.11.6.tar.gz (526.9 kB view details)

Uploaded Source

Built Distributions

sherpa_onnx-1.11.6-cp313-cp313-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.13 Windows x86-64

sherpa_onnx-1.11.6-cp313-cp313-win32.whl (20.8 MB view details)

Uploaded CPython 3.13 Windows x86

sherpa_onnx-1.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.11.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (23.0 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.13 macOS 11.0+ x86-64

sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_universal2.whl (38.8 MB view details)

Uploaded CPython 3.13 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_arm64.whl (18.2 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

sherpa_onnx-1.11.6-cp312-cp312-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

sherpa_onnx-1.11.6-cp312-cp312-win32.whl (20.8 MB view details)

Uploaded CPython 3.12 Windows x86

sherpa_onnx-1.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.11.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (23.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_x86_64.whl (20.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_universal2.whl (38.8 MB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_arm64.whl (18.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

sherpa_onnx-1.11.6-cp311-cp311-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

sherpa_onnx-1.11.6-cp311-cp311-win32.whl (20.8 MB view details)

Uploaded CPython 3.11 Windows x86

sherpa_onnx-1.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.11.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (23.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_universal2.whl (38.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

sherpa_onnx-1.11.6-cp311-cp311-linux_armv7l.whl (16.3 MB view details)

Uploaded CPython 3.11

sherpa_onnx-1.11.6-cp310-cp310-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

sherpa_onnx-1.11.6-cp310-cp310-win32.whl (20.8 MB view details)

Uploaded CPython 3.10 Windows x86

sherpa_onnx-1.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (23.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_universal2.whl (38.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

sherpa_onnx-1.11.6-cp310-cp310-linux_armv7l.whl (16.3 MB view details)

Uploaded CPython 3.10

sherpa_onnx-1.11.6-cp39-cp39-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

sherpa_onnx-1.11.6-cp39-cp39-win32.whl (20.8 MB view details)

Uploaded CPython 3.9 Windows x86

sherpa_onnx-1.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (23.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_universal2.whl (38.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sherpa_onnx-1.11.6-cp39-cp39-linux_armv7l.whl (16.3 MB view details)

Uploaded CPython 3.9

sherpa_onnx-1.11.6-cp38-cp38-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

sherpa_onnx-1.11.6-cp38-cp38-win32.whl (20.8 MB view details)

Uploaded CPython 3.8 Windows x86

sherpa_onnx-1.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (24.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (23.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_universal2.whl (38.7 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_arm64.whl (18.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

sherpa_onnx-1.11.6-cp38-cp38-linux_armv7l.whl (16.3 MB view details)

Uploaded CPython 3.8

sherpa_onnx-1.11.6-cp37-cp37m-win_amd64.whl (23.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

sherpa_onnx-1.11.6-cp37-cp37m-win32.whl (20.8 MB view details)

Uploaded CPython 3.7m Windows x86

sherpa_onnx-1.11.6-cp37-cp37m-macosx_11_0_x86_64.whl (20.6 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

sherpa_onnx-1.11.6-cp37-cp37m-linux_armv7l.whl (16.3 MB view details)

Uploaded CPython 3.7m

File details

Details for the file sherpa-onnx-1.11.6.tar.gz.

File metadata

  • Download URL: sherpa-onnx-1.11.6.tar.gz
  • Upload date:
  • Size: 526.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for sherpa-onnx-1.11.6.tar.gz
Algorithm Hash digest
SHA256 d0c262793c39fca56d0650e934e74669af10d7f3904273a4430b4f338dc95be8
MD5 ecc538dee5793a335f20402adb4a5d4b
BLAKE2b-256 0bc5be1ccec3bcbd040192255cb9490d535cf5672373146dad335d9c807656e8

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 f7ba37bed527a098bbcf12bb9ddfdf400ba7fc96409d98ad44e3ce9f46a6fb2c
MD5 22b296bd4a4811c5980f331bac0af7a1
BLAKE2b-256 c2e297b87d901022545f967cbb37c9b3cae65e8e18aa09d076611762f9866d12

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 1a96e3d052c23e77fad8500370204a53f66b04bfa09fac4c3a0d71575f7e054c
MD5 74c3e8815f8116e044d5eb414a68a8f4
BLAKE2b-256 90de8c47545476823702524d18ef1b0e7e085095c1e32f1dc43969ec25500aad

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f39adaf20219dd3a27a5d2d6201d7bb60b19474d206dac5f92fb718858bcdb57
MD5 dd9639e5dda76d4bb0153300f9f2dec2
BLAKE2b-256 dee920999189251d1e99302281fc77f9264da36851f8579d935c62ff4aee2b86

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 30025e1dd4101cc2f93548c876bdf1e09db70b72bab0604da501e74f650bb508
MD5 695ca62c275d6d0a3ea34e6f8f67ee51
BLAKE2b-256 c45ce5943a15cb8ceb2293b0cae9623a5e2eaf472c54331b65b0e574cb1153a6

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 9efab4d2d79d4225f6c092cf88a2febe87b1e6d3244a5f5ad809d1dcea4ace34
MD5 77b5cb22f5bf0f28b22e411492c07ab1
BLAKE2b-256 fa9b1c9d1c6d229648d44ea29812a26c0d05397c4b5636fc3098dbe2ff9f9fb3

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 102a3a724aaeac32e09841770ada44717e63c1e9f82a32e063ecf8cf63d0403f
MD5 7b9ca4b9a0c2c5fa3966ab27bb766af4
BLAKE2b-256 2dc9dd192ea0f2ab80ead819d2fa00bfe92ce2b88b989968df3935d1347bc232

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d04312f97ccc26955ea6ba08e11bc4fffb2cb22c3ca2be46fd40cd9becbe65d8
MD5 37cdcfe2d5bdfea305836640485fa4da
BLAKE2b-256 3aab3ae1a7e30fec53f85054b16818735c43d0a5954443aa94335f3b4a145fcb

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f55c8c7f47c3618454613c6ce948d4cc0f264d3bc767e1ed09ac456a92a2efb2
MD5 172e101d4fff7ff0755153e340be8cad
BLAKE2b-256 1a564190ba2c27fd604aa9173452028a8f0cc170c72a54e46e673495de1081cc

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 2271405633baa5ff2f4d1847bc9c1928435f10b6b554033ee04d007f2a034c7d
MD5 98ad109b58f1a28e8f3d8bfb9be48635
BLAKE2b-256 6e311cbf5c4da8b36a57943381ad7c3a92a149fccc758b4825690a0c9eddef4f

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0809620bc51851f9ff54880b481a9f979834cb57c8ba51692774a20b0b3daf9
MD5 bf2be4304cc1d91f45fec5aac61b57b0
BLAKE2b-256 8272cc0a5ac7cac426ac3191e2f72569ce84fcdfe8610ffc7c6aba37c73f66fe

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 aa599aaf72302f1b25cd5523a38ac863a6a29f294d81d66dceed9018354a15c5
MD5 8cfc8da6df8121103dde1e15adfebdbd
BLAKE2b-256 e02dc05cc09c8c417fb1a9a12352289fb8869adc6a89b79bd65c53c4d897f179

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 23ce12f42d9864f9336bde126c038ee61141bcdf0233d4a3a3b306f509b8c534
MD5 e961f719bf86664192b485bcedc60132
BLAKE2b-256 0aa8233d95159eeffc0b167536b401052d3105d8885b4d9d51632bb114d105af

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 c0e176f47a1684ae588723718b88ab18f9d8b2bd845297af0ca923bc63d0e381
MD5 d075edb38374817f7e50593da63ddebe
BLAKE2b-256 fdfac0a04474bcc69bbedf421dee50048c07bfc294992ebfe702a43360f8260c

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6be9b3a2bb34008f75ae61358556201c9ff39425dcd475e02bfe3a7030cb196d
MD5 821762dabe99b9d6280e2aff4a19f11e
BLAKE2b-256 36a5571f638377798af6def71a28a76947626471c09dcda4d978eae3d8f813b4

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 f8a8b58ae5b2c8366a40547facbe0932f8ca4ec4e13d6ab108733ec567be5aaa
MD5 7506152ea4c62b7dd8600f8baa26cfde
BLAKE2b-256 cf575a4e7544b3ed4461e0f212485f8187243fcc4f6e22fdd82e7086a08ca6a8

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 929296194beca47a7db16d76b49378a8a702c93afeeafd5b66bb7bcca9694256
MD5 fe8a48c732fb46de0a9341d672177ad3
BLAKE2b-256 4699a943d99d78c731136c2bcb3c118ffd4390f75f239a3c479216cfb6dcddbb

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49175825262f20558c67d7b210c438604a3d9ed3326825d9c7ba1a5eeb12ea3d
MD5 6b76a6335714e8869c008bb8d2dcdd4d
BLAKE2b-256 989e592a72e3cd93cfac8a6ca6d432eab993621e3a2a26a71daada3d88afa6e5

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b818146c032935d9d4bae1950e2292cf85f883c2faad089409d5b4f9cf7baac3
MD5 78684d2395bf94604b74a61915385acd
BLAKE2b-256 425180a1f142f88b2a3b23416610502f69e3bdc236e83bffce12b6981a4a5a3d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 5e4a7a480ac867e0ecc2f33f0c20366536b71eff89655cb5cab257b3e1aec46d
MD5 03d30c0bb693a2ef5ecd5448c931cee8
BLAKE2b-256 7e1f0958e0781268b065106a80873cf582b3009a3253f5d39d28f7fe1e66eecb

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 5c5adf19ac1d3fc658b719e21bc7f47d5a7a62768868188c98b1ba8e1c58eaae
MD5 847a961abcb5531ccf2d72d30d6895db
BLAKE2b-256 22efdb58b0c9d8d5005bd6298fb97152b89e79449b44e5b898c93a4f6c2b254e

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 714fbb5d2d5555fb1976f821d1335b10182c23181bd738c42abd03eadbf3a243
MD5 992cc2243ff2693255abaabff14d118d
BLAKE2b-256 4e41f4ea510d8287ece668a9fd8505831c87a65cc335df53aecd3bbf0a111240

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp311-cp311-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp311-cp311-linux_armv7l.whl
Algorithm Hash digest
SHA256 42545043ce7bf8a2ccdb1f2552c282efde030233137bdd216a59083eeb361ae2
MD5 65ce67dfb96fd083d97812b9cb66b64c
BLAKE2b-256 64bc9e75f15970eded7a3328d5a08116a48415c75a773c0782a2638414fb3572

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 029b74f434ebfa658d296e090ef4aa669c9028fbe08eef917b2b71c13ca6ed40
MD5 7a7b9c80aefa5115fbeef069ddec84b7
BLAKE2b-256 1e7c453bb070c4c29b87c209a45cd8a9c0f7fe3405a93ab8c27b4a840967403a

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 c9088b7b36f3c2b9088f6bc8957e7781f30c608350d753f59d1cc1b491c8ba3b
MD5 0e759982c7055bf0fd8ef6984cc29418
BLAKE2b-256 e9be4071fd281b0cb59b7b04479ab01be36c852f6efa7db41f70ed58aa1c566d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 329c912652cf47b7f5f4df26d984957743e91b820049ac85a445b1670e904f57
MD5 76cf4dd21c370b923f4907ecc78582af
BLAKE2b-256 081f73f1774522ffe83a876b49380501792a6f5bcb450702d0cf1dd759f230e0

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0be088bce15f10c19ae3fc065159513534947c6063509917263bafbd77e268a6
MD5 e0c039a08a4d628aeb88ad7fa9c5eb1a
BLAKE2b-256 ea3142fd5c29eed384ff9de6b05b5bd5f188c9b9553bc0e26a7b301f58317b28

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 cf381fcca9260ee960d238365ba3934aabe13dbd96bd689284db984a4c42707d
MD5 eab74f119128453888c02d3c0f5470f1
BLAKE2b-256 631acbcf25a6de7f9c7b8cb4035103966710357f433b0a7b88fe9f1425062c21

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 2ac64af5a894a421b1e6f35832df6af8c8778511963a9345be0d2630e427cea7
MD5 3dd018308ec19b8e0ce21900b8ca99da
BLAKE2b-256 6840a1688050973d232b8b4c7614f0f39e3cd1ac4512ca8aed0b7780f93d2b2f

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6c75b683ed714db98be7b1a613de7110ff099dd86daac7c6360f21912aae89c
MD5 e05f17939deb597aa7842aaad3f0c602
BLAKE2b-256 8251b667249e9ed5a8dcfb820e557d5e927118ce6f17ca39c55129c9d788ec3e

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp310-cp310-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp310-cp310-linux_armv7l.whl
Algorithm Hash digest
SHA256 3c555dc3f1d42d00ec18c3e864d46deca1bcc2ca6f908ea25393c6fd1d2c3426
MD5 a2f2b9bb901005df3cb2038c93dc0f7e
BLAKE2b-256 6da6de4cfd9fc97fd7d61f81141dfb4d5f5ccb45aa77d2d82860b2e038b181b2

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 f29eccd8885bc1387a935dbd71aec94e40d9b90ca807d8ea4d63e0c5d7fce016
MD5 ad5d4f29f3750f1fe2e1a770a025a464
BLAKE2b-256 179b05f7eaf8b4bd9837bc5bf81eb53f0898536334cf4266cbff0961a517d29b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.11.6-cp39-cp39-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 5afec3036e996b9c38626034c34a19a63c47873264df50cf432ee6f8f6562eaf
MD5 38c1e3c921a2881a022af095a1df30c3
BLAKE2b-256 0623db7258c69ab7e23f6e1b57e1b9c8305662edfcbb8a7c5126e5ff04a494a8

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 848afd451ac25473f840399ed6757c458d30e581395cbaa2a5a9b26bbbc603af
MD5 f49269d55c32ed91f1661efba5086c35
BLAKE2b-256 2e67c21729536466a47530bb5549823d7568c6eaa687e0d0ecc80e415d67b970

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fdf93746ce9145bf4044f20528883384463c0c691ba95f9206faa5a6d48b4ee6
MD5 1f4e0b6ef003a0c3a6c93f67f3a884fb
BLAKE2b-256 f37afda7d4b918d860ffc036cfbaa70e44f60e65f50893af1bbf821d57477cbe

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 a81e85f1df1b4fef7ee485b845e8e54553e32d59f38bd05ccd802dbabc740854
MD5 8ffc80b1c000616af62233a2428c22e1
BLAKE2b-256 242f9cdf885aa63f065455e8b39105726618ba2466f76b27485158eb0722dcb5

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 0d16d1967f850b8952400d33f14710d197914bb5ea6b1266e229d4507b7bbc2e
MD5 2122201bf52064565cf7224f91e24b90
BLAKE2b-256 b28fdf5b89c85c997a586bccba03675c4520ef0cdac1d9f6859bc6a36adc40ba

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 33fa3b6813bda3e014ed38a2b6decf3f1ccae4d81bc1901857cf84e714775f80
MD5 4f740ee36190f279a41a3b238f35c169
BLAKE2b-256 572cbf47e0f23e53e8dc13d7203c769af0007b464757a595e4763bdf9c714132

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp39-cp39-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp39-cp39-linux_armv7l.whl
Algorithm Hash digest
SHA256 bc79f3282689a85cd53f56baa8a9a1ccb32b04d682f47e13a514a9abde59764d
MD5 77b8859115b88bfec82bfc6c571c74f6
BLAKE2b-256 0a77b663e5f2539669a388c24f6d38e451022be30952930a7408662b5f5f1da5

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 3396c640fec251f56f41470d5923bfa587fe5ce0dc63ccf3a9650ca49116150e
MD5 0ba2a99116dc16ce23d9a7fcd8f69fef
BLAKE2b-256 1b4f37b730282e63256d5ded86c495afac297b0a0831ecf6045f261b6bb870dc

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.11.6-cp38-cp38-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 d5cdf279453ea88242a644b8aab8cb927291b96a434a4ab5657ee1b551afa168
MD5 41ab111c7715e3f0ee11f82135f1af30
BLAKE2b-256 a560b242da45824925701d1437d91edac1cc559219b608549a71427adf4b63f4

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d488750f7842bcbe1edebc22515c3962589c4fe80b27c853af23cc7e1ae83853
MD5 2c8962ce15d2d816d63a11b42b116485
BLAKE2b-256 bf76f44c1293b7938ae9ba262f21b32a5a7f1999a100736d01bd5345028fdd48

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 208bcb9e78f657809a0340ed3b80bedadc9e22a77cce3789e6b8a0601100d81b
MD5 3d87066d91c2ec56ac28dce27f0facd2
BLAKE2b-256 4798ce25c7cbd3ff81927ec3e340641996f4ffebc610765525e645ab182e6a11

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 0a7fa67a06cc2ca458b645bad854adf01cd7744531a4e0fa3aeacb8632afc155
MD5 154159cf2d56e002601279829dd81fd8
BLAKE2b-256 8ba816c188e8e56fe35aabfa038846a31c8bdeba9079d6aab4b220f7981ebb78

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 6ff4d6cc738b6d420df38a702990e340f1d308f39b806234d28ad4ec5aad8d94
MD5 6e8c8e322ffaa0a42b38f31daacf0955
BLAKE2b-256 55c7c5404beda5e6e2c33c6ec62637437343758be3ae13596810cdc93842074c

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e709aa2c053f6355674b23241bab18bcad1c30dbfaaa259f4ce0a1fee0203d0
MD5 5a21dd343ca9f1c90eb1bd7dc8e80275
BLAKE2b-256 8c57977e5431447402b1e0f7532ed5b4c8e1e94c21a264b56fde50aaaa4c9909

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp38-cp38-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp38-cp38-linux_armv7l.whl
Algorithm Hash digest
SHA256 42778cf93cf3fa84310f6295c57d86ead1a89f401e1c59f5c0469b0fa7fb0ebe
MD5 212dff1660972763805c76188d460dd7
BLAKE2b-256 8cb2fc751b9b7f9ee17370b2266d4fe31eb822e4bc87d69b451c693c872a775c

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 2906667fa8443b2018aa50882748073e87fee871fec20ed61a762e33087606f8
MD5 b26d0dd6089f2703eff4593912393aed
BLAKE2b-256 a3d41511693df398b485169fe42de07d6addf1691856bf494772e5900a59e634

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.11.6-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 20.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.11.6-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 4e25b9f4a06212563eb38a48c4bde16ebd33ff7491689b2af957ad2072b9407d
MD5 71a7ad94cf62c93b03007cb9c21a5364
BLAKE2b-256 0a2234a454d950c26c6d7d59b0059802c9b03103cda157ccfe07213001692129

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 78b066dfd94820802638e998de3bb8d4c7f00a448fc08a60de0d7c0a7f0c2b80
MD5 73b994fe1623e617a304241363d44889
BLAKE2b-256 fd5bced6e19b35349aaf333066f79c8c2891c9675b37459e9685eda13dfbc5be

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.11.6-cp37-cp37m-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.11.6-cp37-cp37m-linux_armv7l.whl
Algorithm Hash digest
SHA256 98275e85ada92d917b0b243faaab73ff0945a6982a0dbe8644ff013cfa6671ae
MD5 7929df12afc271eaf29f8c0cd1c8c338
BLAKE2b-256 45d4feefd398918f6179c8101d954593099ce229ce06401d715e162df5622b88

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page