Skip to main content

No project description provided

Project description

Supported functions

Speech recognition Speech synthesis Source separation
✔️ ✔️ ✔️
Speaker identification Speaker diarization Speaker verification
✔️ ✔️ ✔️
Spoken Language identification Audio tagging Voice activity detection
✔️ ✔️ ✔️
Keyword spotting Add punctuation Speech enhancement
✔️ ✔️ ✔️

Supported platforms

Architecture Android iOS Windows macOS linux HarmonyOS
x64 ✔️ ✔️ ✔️ ✔️ ✔️
x86 ✔️ ✔️
arm64 ✔️ ✔️ ✔️ ✔️ ✔️ ✔️
arm32 ✔️ ✔️ ✔️
riscv64 ✔️

Supported programming languages

1. C++ 2. C 3. Python 4. JavaScript
✔️ ✔️ ✔️ ✔️
5. Java 6. C# 7. Kotlin 8. Swift
✔️ ✔️ ✔️ ✔️
9. Go 10. Dart 11. Rust 12. Pascal
✔️ ✔️ ✔️ ✔️

For Rust support, please see sherpa-rs

It also supports WebAssembly.

Introduction

This repository supports running the following functions locally

  • Speech-to-text (i.e., ASR); both streaming and non-streaming are supported
  • Text-to-speech (i.e., TTS)
  • Speaker diarization
  • Speaker identification
  • Speaker verification
  • Spoken language identification
  • Audio tagging
  • VAD (e.g., silero-vad)
  • Speech enhancement (e.g., gtcrn)
  • Keyword spotting
  • Source separation (e.g., spleeter, UVR)

on the following platforms and operating systems:

with the following APIs

  • C++, C, Python, Go, C#
  • Java, Kotlin, JavaScript
  • Swift, Rust
  • Dart, Object Pascal

Links for Huggingface Spaces

You can visit the following Huggingface spaces to try sherpa-onnx without installing anything. All you need is a browser.
Description URL 中国镜像
Speaker diarization Click me 镜像
Speech recognition Click me 镜像
Speech recognition with Whisper Click me 镜像
Speech synthesis Click me 镜像
Generate subtitles Click me 镜像
Audio tagging Click me 镜像
Source separation Click me 镜像
Spoken language identification with Whisper Click me 镜像

We also have spaces built using WebAssembly. They are listed below:

Description Huggingface space ModelScope space
Voice activity detection with silero-vad Click me 地址
Real-time speech recognition (Chinese + English) with Zipformer Click me 地址
Real-time speech recognition (Chinese + English) with Paraformer Click me 地址
Real-time speech recognition (Chinese + English + Cantonese) with Paraformer-large Click me 地址
Real-time speech recognition (English) Click me 地址
VAD + speech recognition (Chinese) with Zipformer CTC Click me 地址
VAD + speech recognition (Chinese + English + Korean + Japanese + Cantonese) with SenseVoice Click me 地址
VAD + speech recognition (English) with Whisper tiny.en Click me 地址
VAD + speech recognition (English) with Moonshine tiny Click me 地址
VAD + speech recognition (English) with Zipformer trained with GigaSpeech Click me 地址
VAD + speech recognition (Chinese) with Zipformer trained with WenetSpeech Click me 地址
VAD + speech recognition (Japanese) with Zipformer trained with ReazonSpeech Click me 地址
VAD + speech recognition (Thai) with Zipformer trained with GigaSpeech2 Click me 地址
VAD + speech recognition (Chinese 多种方言) with a TeleSpeech-ASR CTC model Click me 地址
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-large Click me 地址
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-small Click me 地址
VAD + speech recognition (多语种及多种中文方言) with Dolphin-base Click me 地址
Speech synthesis (English) Click me 地址
Speech synthesis (German) Click me 地址
Speaker diarization Click me 地址

Links for pre-built Android APKs

You can find pre-built Android APKs for this repository in the following table
Description URL 中国用户
Speaker diarization Address 点此
Streaming speech recognition Address 点此
Simulated-streaming speech recognition Address 点此
Text-to-speech Address 点此
Voice activity detection (VAD) Address 点此
VAD + non-streaming speech recognition Address 点此
Two-pass speech recognition Address 点此
Audio tagging Address 点此
Audio tagging (WearOS) Address 点此
Speaker identification Address 点此
Spoken language identification Address 点此
Keyword spotting Address 点此

Links for pre-built Flutter APPs

Real-time speech recognition

Description URL 中国用户
Streaming speech recognition Address 点此

Text-to-speech

Description URL 中国用户
Android (arm64-v8a, armeabi-v7a, x86_64) Address 点此
Linux (x64) Address 点此
macOS (x64) Address 点此
macOS (arm64) Address 点此
Windows (x64) Address 点此

Note: You need to build from source for iOS.

Links for pre-built Lazarus APPs

Generating subtitles

Description URL 中国用户
Generate subtitles (生成字幕) Address 点此

Links for pre-trained models

Description URL
Speech recognition (speech to text, ASR) Address
Text-to-speech (TTS) Address
VAD Address
Keyword spotting Address
Audio tagging Address
Speaker identification (Speaker ID) Address
Spoken language identification (Language ID) See multi-lingual Whisper ASR models from Speech recognition
Punctuation Address
Speaker segmentation Address
Speech enhancement Address
Source separation Address

Some pre-trained ASR models (Streaming)

Please see

for more models. The following table lists only SOME of them.

Name Supported Languages Description
sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20 Chinese, English See also
sherpa-onnx-streaming-zipformer-small-bilingual-zh-en-2023-02-16 Chinese, English See also
sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23 Chinese Suitable for Cortex A7 CPU. See also
sherpa-onnx-streaming-zipformer-en-20M-2023-02-17 English Suitable for Cortex A7 CPU. See also
sherpa-onnx-streaming-zipformer-korean-2024-06-16 Korean See also
sherpa-onnx-streaming-zipformer-fr-2023-04-14 French See also

Some pre-trained ASR models (Non-Streaming)

Please see

for more models. The following table lists only SOME of them.

Name Supported Languages Description
sherpa-onnx-nemo-parakeet-tdt-0.6b-v2-int8 English It is converted from https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2
Whisper tiny.en English See also
Moonshine tiny English See also
sherpa-onnx-zipformer-ctc-zh-int8-2025-07-03 Chinese A Zipformer CTC model
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17 Chinese, Cantonese, English, Korean, Japanese 支持多种中文方言. See also
sherpa-onnx-paraformer-zh-2024-03-09 Chinese, English 也支持多种中文方言. See also
sherpa-onnx-zipformer-ja-reazonspeech-2024-08-01 Japanese See also
sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24 Russian See also
sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24 Russian See also
sherpa-onnx-zipformer-ru-2024-09-18 Russian See also
sherpa-onnx-zipformer-korean-2024-06-24 Korean See also
sherpa-onnx-zipformer-thai-2024-06-20 Thai See also
sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04 Chinese 支持多种方言. See also

Useful links

How to reach us

Please see https://k2-fsa.github.io/sherpa/social-groups.html for 新一代 Kaldi 微信交流群 and QQ 交流群.

Projects using sherpa-onnx

BreezeApp from MediaTek Research

BreezeAPP is a mobile AI application developed for both Android and iOS platforms. Users can download it directly from the App Store and enjoy a variety of features offline, including speech-to-text, text-to-speech, text-based chatbot interactions, and image question-answering

1 2 3

Open-LLM-VTuber

Talk to any LLM with hands-free voice interaction, voice interruption, and Live2D taking face running locally across platforms

See also https://github.com/t41372/Open-LLM-VTuber/pull/50

voiceapi

Streaming ASR and TTS based on FastAPI

It shows how to use the ASR and TTS Python APIs with FastAPI.

腾讯会议摸鱼工具 TMSpeech

Uses streaming ASR in C# with graphical user interface.

Video demo in Chinese: 【开源】Windows实时字幕软件(网课/开会必备)

lol互动助手

It uses the JavaScript API of sherpa-onnx along with Electron

Video demo in Chinese: 爆了!炫神教你开打字挂!真正影响胜率的英雄联盟工具!英雄联盟的最后一块拼图!和游戏中的每个人无障碍沟通!

Sherpa-ONNX 语音识别服务器

A server based on nodejs providing Restful API for speech recognition.

QSmartAssistant

一个模块化,全过程可离线,低占用率的对话机器人/智能音箱

It uses QT. Both ASR and TTS are used.

Flutter-EasySpeechRecognition

It extends ./flutter-examples/streaming_asr by downloading models inside the app to reduce the size of the app.

Note: [Team B] Sherpa AI backend also uses sherpa-onnx in a Flutter APP.

sherpa-onnx-unity

sherpa-onnx in Unity. See also #1695, #1892, and #1859

xiaozhi-esp32-server

本项目为xiaozhi-esp32提供后端服务,帮助您快速搭建ESP32设备控制服务器 Backend service for xiaozhi-esp32, helps you quickly build an ESP32 device control server.

See also

KaithemAutomation

Pure Python, GUI-focused home automation/consumer grade SCADA.

It uses TTS from sherpa-onnx. See also ✨ Speak command that uses the new globally configured TTS model.

Open-XiaoAI KWS

Enable custom wake word for XiaoAi Speakers. 让小爱音箱支持自定义唤醒词。

Video demo in Chinese: 小爱同学启动~˶╹ꇴ╹˶!

C++ WebSocket ASR Server

It provides a WebSocket server based on C++ for ASR using sherpa-onnx.

Go WebSocket Server

It provides a WebSocket server based on the Go programming language for sherpa-onnx.

Making robot Paimon, Ep10 "The AI Part 1"

It is a YouTube video, showing how the author tried to use AI so he can have a conversation with Paimon.

It uses sherpa-onnx for speech-to-text and text-to-speech.

1

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sherpa-onnx-1.12.5.tar.gz (557.1 kB view details)

Uploaded Source

Built Distributions

sherpa_onnx-1.12.5-cp313-cp313-win_amd64.whl (24.5 MB view details)

Uploaded CPython 3.13Windows x86-64

sherpa_onnx-1.12.5-cp313-cp313-win32.whl (20.9 MB view details)

Uploaded CPython 3.13Windows x86

sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (25.1 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (23.2 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.13macOS 11.0+ x86-64

sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_universal2.whl (39.3 MB view details)

Uploaded CPython 3.13macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

sherpa_onnx-1.12.5-cp312-cp312-win_amd64.whl (24.5 MB view details)

Uploaded CPython 3.12Windows x86-64

sherpa_onnx-1.12.5-cp312-cp312-win32.whl (20.9 MB view details)

Uploaded CPython 3.12Windows x86

sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (25.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (23.2 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_x86_64.whl (21.0 MB view details)

Uploaded CPython 3.12macOS 11.0+ x86-64

sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_universal2.whl (39.3 MB view details)

Uploaded CPython 3.12macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

sherpa_onnx-1.12.5-cp311-cp311-win_amd64.whl (24.5 MB view details)

Uploaded CPython 3.11Windows x86-64

sherpa_onnx-1.12.5-cp311-cp311-win32.whl (20.9 MB view details)

Uploaded CPython 3.11Windows x86

sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (25.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (23.2 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.11macOS 11.0+ x86-64

sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_universal2.whl (39.3 MB view details)

Uploaded CPython 3.11macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

sherpa_onnx-1.12.5-cp311-cp311-linux_armv7l.whl (16.4 MB view details)

Uploaded CPython 3.11

sherpa_onnx-1.12.5-cp310-cp310-win_amd64.whl (24.5 MB view details)

Uploaded CPython 3.10Windows x86-64

sherpa_onnx-1.12.5-cp310-cp310-win32.whl (20.9 MB view details)

Uploaded CPython 3.10Windows x86

sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (25.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (23.2 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.10macOS 11.0+ x86-64

sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_universal2.whl (39.3 MB view details)

Uploaded CPython 3.10macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

sherpa_onnx-1.12.5-cp310-cp310-linux_armv7l.whl (16.4 MB view details)

Uploaded CPython 3.10

sherpa_onnx-1.12.5-cp39-cp39-win_amd64.whl (24.5 MB view details)

Uploaded CPython 3.9Windows x86-64

sherpa_onnx-1.12.5-cp39-cp39-win32.whl (20.9 MB view details)

Uploaded CPython 3.9Windows x86

sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (25.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (23.2 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.9macOS 11.0+ x86-64

sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_universal2.whl (39.3 MB view details)

Uploaded CPython 3.9macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

sherpa_onnx-1.12.5-cp39-cp39-linux_armv7l.whl (16.4 MB view details)

Uploaded CPython 3.9

sherpa_onnx-1.12.5-cp38-cp38-win_amd64.whl (24.5 MB view details)

Uploaded CPython 3.8Windows x86-64

sherpa_onnx-1.12.5-cp38-cp38-win32.whl (20.9 MB view details)

Uploaded CPython 3.8Windows x86

sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl (25.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl (23.2 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_x86_64.whl (20.9 MB view details)

Uploaded CPython 3.8macOS 11.0+ x86-64

sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_universal2.whl (39.3 MB view details)

Uploaded CPython 3.8macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_arm64.whl (18.4 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

sherpa_onnx-1.12.5-cp38-cp38-linux_armv7l.whl (16.4 MB view details)

Uploaded CPython 3.8

sherpa_onnx-1.12.5-cp37-cp37m-win_amd64.whl (24.4 MB view details)

Uploaded CPython 3.7mWindows x86-64

sherpa_onnx-1.12.5-cp37-cp37m-win32.whl (20.9 MB view details)

Uploaded CPython 3.7mWindows x86

sherpa_onnx-1.12.5-cp37-cp37m-linux_armv7l.whl (16.5 MB view details)

Uploaded CPython 3.7m

File details

Details for the file sherpa-onnx-1.12.5.tar.gz.

File metadata

  • Download URL: sherpa-onnx-1.12.5.tar.gz
  • Upload date:
  • Size: 557.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for sherpa-onnx-1.12.5.tar.gz
Algorithm Hash digest
SHA256 c146a7de2667d43d3cc9a93f3bbb007e74c5b566da099b7a2452d9b1f85562c5
MD5 8c7bfe9319ec8fe3422c5edb28129cb1
BLAKE2b-256 f6713c02a08fa06c2a77c3e60d6c8063180efdfb4a3f46362f05f9ddd27f535d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c40a04294ce98997d726036f048ef2d48ac1caecbd5206df45141b7b0ec1f7ea
MD5 ea95b1550c06c9a8a0141bb0a85eb0f3
BLAKE2b-256 508c9ed4f6228633c6b9e773fc194014e3385d112b89f61ba726eef922694490

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp313-cp313-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp313-cp313-win32.whl
  • Upload date:
  • Size: 20.9 MB
  • Tags: CPython 3.13, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 ee4692b35f5fde541a284a2a9f51aa50d9d98b0039d41ff251e9f7381b20e0ae
MD5 3e6976a055fe4a49629dcece3da81b00
BLAKE2b-256 823da61d442defc618c002957a1310cfa1ddb802eae4fa1baea5ff7b74bf759f

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 44c3cd94bcc0eee75ad40197706eb81f0df7fa5c3c1dbefb429e572759f1b42e
MD5 e0bb143bcfbadf5ba597ff8c85a77b42
BLAKE2b-256 fa24e95889b8b0441fed1b8df1b3bd8661b7e9f4923fa08ffce257a364e8c99e

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 53f5b160b7bf069b9f463b80eeae90d4a44e9d9b066cbb270101a33c236e4663
MD5 2afbc5dd8eec6c721378a724b9646fc0
BLAKE2b-256 fd406262c1afe4e1f882ce94c48555b8aa46dffb987290de4ed6a670165409f3

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 36ddadc0b581069536fc61fa293752751080c01bd561076985cf45091fbb0106
MD5 f44cc6d70e29829ff8048aae3290b3ad
BLAKE2b-256 ebafc5f8815ec2c30bbc5eca6abaadf297aaf87023f5848c32c13816fb22853f

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 f066bfe2ac98918ebbeab781634d3efcabecf8894f85a199a6957cce580f4e60
MD5 2c1ff4801906824217de3587f2a1467e
BLAKE2b-256 1bd73297e6fbf85dfb77b0b90819aff703b3467a79258aaaad1b30d81b1bba3f

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7cfcb46506b6f57fc938908ef66a0b32b1688bcad5c2b9d18ccfc3144238f4ce
MD5 7056878f1098f61d215d5ca75b358ad1
BLAKE2b-256 ed942592f71e0dc8fc42cf789239b9890ddb4e02619c141353550f5fa143e9c6

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f172cc9a324dd6804bdef3c3fcecdd5739dce203ade94c6978020d6a878812ae
MD5 b4a99dea57e6703a8f7a7966e154f515
BLAKE2b-256 7ab169ee0212fe0ee2cb936aa67ac829067da2ed9ff828789b9cb936f6bc6f9b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp312-cp312-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp312-cp312-win32.whl
  • Upload date:
  • Size: 20.9 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 df858f746cfdc1dc61bf291a025a838b5971356851f1bcdd791d91b28b51f469
MD5 3d44b3d3de9a88ba865c128e42fb90ed
BLAKE2b-256 b4545cdcd3f74f62d96654a1d384b01b32f74f97aa6120f398748d856695429a

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3202db15b2d2ddb5b205ac35336d79cd3bb26bd2e0f40504adac8f8722ea5359
MD5 797d0b27618172faaab31cc6148fd927
BLAKE2b-256 a4f5b617fa8c556e58448b8c85f2688bfc3f78e6fff0b05cf5651dd5f0aaac4b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 d15ad53faa2af0dbda64f20bc2089e1bf94363722330526282ffc5c16a5f410a
MD5 dda040bb1bfb8ff62d6825cb11f56c84
BLAKE2b-256 1e5ea17391f7033810209566615d03c6f88cb3b6ed8052c497a175d44d6d549a

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 4500fb4a8a5f082ab87119bd6b3eaebb5cca34afd64e38f8b784775fb84f15b8
MD5 e52377a34b1262d55ad0e784525f9495
BLAKE2b-256 405d873bb373de0fab37a20e8fcf4bc691a4ce579ddd340ef2e4221c001bbde7

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 40a5dad24a116a5175dc93822cea1e602fa2572770aa80bf6de7c8635f72ac8a
MD5 7b6a49cafd22a1be0ddfab966cf09768
BLAKE2b-256 f31c897bdd0132a74bc5ad2f136761af4540bf2171f17b3ad3637b5c67cfcdb1

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4e1edbb3277a65c5bda59ab4604eb1b03363a580318627fddd79f048c8f7be9d
MD5 c3a758f4c23c351e9aaf1ddcfb16a128
BLAKE2b-256 49e557e126d450313bd6c293d2c2a22f84327d7b87010e71bfff1c0bc9ad841d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 2671df464e97da6112d5f5ba24617b9f671f597a32658e113ebd11b66c8a9613
MD5 661e7acd04809b6fbf37e2de1552ca74
BLAKE2b-256 8d8ff81a1f00aa4ef5f7ff81ea7d43c5bcdc81c961469d4eff624c7ed680ca02

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp311-cp311-win32.whl
  • Upload date:
  • Size: 20.9 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 e1ee7d50ce080e41a42c33c5ecc7cfb7305c15397dc1b8afe83369b3692297a9
MD5 3a352f66f51572636199a26251165e4a
BLAKE2b-256 3436d71c99ffd0df04658e6a429c5ad183816470152a8a9d2bb67dc09ac38646

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 3995ae2ecd63c211de52782fd5471f5acd4c6b507d31dec57ac0d309dc833391
MD5 ce7c53724f81593ffac664564fc84cf6
BLAKE2b-256 025bdb1524008d32ed01e74ee752185213f580505969293ec8b3fb71726a72ab

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 d0d5924a4e72494df1f05d1b9ce23ac18f91a3aa77a16bc7409601169cb0f6a6
MD5 b9ae8e44864a5e2469fc10bc816dd1b3
BLAKE2b-256 1fdadb278c15bcdf93bca9ffc67f10e09d3bbc083af69eaec7fc90b751f4d849

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 ebc8736b6a460b8fd84ce1d72ddc61065ad5ac1f6e1d7baf5794e39ffda2528c
MD5 5795fe239dcdda5ba96eb9c5bc15e1ee
BLAKE2b-256 7b4959f68ed6bd57a652059d567f1ff8557513e0a66a753e0f82744728ef2c92

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 75aa4f3514b18dbbd302e627275b9a68d8af7b04b5e9c5951485f658bffba344
MD5 4063ee4ee18335dc3c9dc6f3bd2a0323
BLAKE2b-256 a356a37f82f7512ddae6b4402363d489fc62d66c6d3b7e2cdbae2ce48d6b5f7d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 499817b58975fc6c5127ffeaa1c56cf5d9fb5badf0e42b4b9b9383a520d4fa41
MD5 81ebafd94279a5d7837eb474ce6db909
BLAKE2b-256 7e883ddb1cbc3895d35e71e3f1b5de74d8323a6188dc740a713b6bf6924ed6d7

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp311-cp311-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp311-cp311-linux_armv7l.whl
Algorithm Hash digest
SHA256 bb71ac13d6388c86a7a31df7d01fc611cd8cc39915b6236eaa6bdc72596da563
MD5 605545a1d9e2c5c92062ed5e7644c952
BLAKE2b-256 7b3e1132499e2dee849ebcd0fca01d6bcda9f47086f50d54ba7305924285f93b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7e8fcdac48fec93a66cce6a78902447c1dfdf0423e97feab1cc37e69531314d7
MD5 7b0435b07121837b12a21896f4e56371
BLAKE2b-256 f6d11c21ae7a808fcd51c5408bb6ebfc7e9af5e367a856346b4d47812526970b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp310-cp310-win32.whl
  • Upload date:
  • Size: 20.9 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 1164d09e4dc8bceddb74b25f994b6f509630fd92a845b075473d2c6022aa787a
MD5 c07c76f80fc82626fe22febd7e3f7ffc
BLAKE2b-256 bd544bc46664cf2c916912c3f1f03134b3f40cf91dff46b7e3237d77e4b9df9d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 99f819b671a557801c10fb4944d6e321cc0faec26341f10c119ac2b44e2444b1
MD5 3baa5b7917431d9b7f5e9ffaebf34d19
BLAKE2b-256 ebf49f00868224e13790ca9217313d87f9b0b24d1bde5993b492dcc5a2880e85

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 13ce6aa0a6549aecd2b8f6562ecdb95eb813ad9b7eb13e19ebf97b9282729960
MD5 4e3c18c24438fc833aba430776496e66
BLAKE2b-256 b626429c33117c96ce60094dd1ee9f91d09ba6e0d4238985dd881ab345888633

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 e0fde725bbd1be2cba97f02aabca7dfbcd6a51e89da405970c255121881f4e9b
MD5 4ac96f428bd4f1deff46b3070de9a10a
BLAKE2b-256 bcfe1c137ffd593502b308885dc789311edb44408807f12e1a655dabc5886cc8

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 f7a71d361b291af7e0d1f2444c3f8b91df58e787c1d519d32894e0233950277b
MD5 243585851fad1971e906785b2162047d
BLAKE2b-256 f48d446aa4d651844fc8ff50a92232e0767f8b0a849a3f778db59eb85ed430ef

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ab615c1cc6f03ff9ce07239769928668955753d752c041ec9e5f1f28b42da28a
MD5 bd44d5208b73a2671bc4c240d15708bb
BLAKE2b-256 216bf5854c5b119feab81f6f0a305ce704e28586fbf00bf905ab6c22b1acd15f

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp310-cp310-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp310-cp310-linux_armv7l.whl
Algorithm Hash digest
SHA256 de3f4ec7fcc466aa8c34b6ca43cbdc7b6d793e7d5ff9070f9e99b67a8799aa7f
MD5 4d9ef17f8ac43aac84365ecd69a4fa1a
BLAKE2b-256 cf8923e8d15ba25c3b41d55f918db5b39277c0c6e4a191066c78950e99c00a91

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 24.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aba1d43aee557c705305a430c02100e1ecf133aee46b2baca3066cf3df1bdafe
MD5 67a9f205648190ac4a7addba01bebdb2
BLAKE2b-256 96f83c91b2e9723decfe0716e9962a75c9b7bf8326f52dd49dbba902b08c02b0

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp39-cp39-win32.whl
  • Upload date:
  • Size: 20.9 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 d7e06748f9202e3bb7ad618c2ff3dd066d569c5d5ed92e484554a1230da3b84f
MD5 83e21c802f7b7074e76cf0aecbd34d13
BLAKE2b-256 e2df67af3f2329f6cebc50b3c52a4e74bb56cca58594e7deb923a12087d62a4c

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 156fef286553a3a635b031068781850c4b8fb2b39c16121bc1b9dc0da736930b
MD5 bacef275cdcbc951262ecf8f9a82b0ac
BLAKE2b-256 b10302815ce5f9fe7fd0f38cbed860d73f934688dd047dfd7dc3a94a8b6bf8a9

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 215593195e62c3093b9769a73b220f1ae443062080c0acea279d741e1733d8da
MD5 69160ebb54ad0496f7e1fb088365110d
BLAKE2b-256 587476849348ef1e86398726c7e07a218b7237a63719427b74dc3280c7de2bee

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 26ab724e7a1f7c679fe7fb2686d0a32831cf1efff606f5049e0edbfed90accb0
MD5 91ebc50dfc083c1638647d3f78002d6c
BLAKE2b-256 862996ed1135beafc91d395d322f318d1c7637d13fa6da5f3cde9bcb61433fae

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 03987c56a03b97ae79843efa3ffe3c8c3c81de0d391ca9f2a43c6083ed17edc3
MD5 0fabd60f19551e3db0a726e44022747e
BLAKE2b-256 901689c88f56f08857745028f9ee7b3c0227d9bcbe5976b9b4be97019610bbe1

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c9a635b7b766ae172547083b0cbb40de9bb86bb7c10e4bd8451c99f3467fb87d
MD5 43e3eb5d5078e0fb2d445917ca77b717
BLAKE2b-256 bcb15d020fa7da20d56a71465952c1c4ee1ea143fa1bb823cb6a7b09cbbf4a7d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp39-cp39-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp39-cp39-linux_armv7l.whl
Algorithm Hash digest
SHA256 44daeb97c575e692b95f7d7e0251086ecbcb1bbade603027aa0f91d22078d30f
MD5 b8cc073e89f7a9e7978e59f62dd501a2
BLAKE2b-256 e632ddbb3b7e0966899185196ecd540935d617e4a2ba0ee84bae6b5a4447a5fe

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 24.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.8.10

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 dc8011b9e9a6e82d65a4cab5474e874f894064d8c183e90fade836e4ae6ff958
MD5 2293a2b14d7bb423860a69475ef6d2cc
BLAKE2b-256 0c96866318965cc16e7d5bb6c93bfcebb119176a8c598b7008e935ae0eb50225

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp38-cp38-win32.whl
  • Upload date:
  • Size: 20.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 e22c2b139f8f50daf7618b9903b6a3d88d6a2a63e42f49d76d8722de391cdb4d
MD5 bed9649a51e9bb967c164995005c152a
BLAKE2b-256 1e83928c9b8cf732ab0e1cf062cd17aa472fc051841c7a3579125dd7ee68e913

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl
Algorithm Hash digest
SHA256 32284e79efccab87f8406b2ef03ee038a67822986a560f705e9df81b2713e51f
MD5 4ad8b9a7c80f21eb5ea086e17e658c65
BLAKE2b-256 bb3d24241f79d8031a16df921b8a4028c5e1a2d7837c01d5c7c07e6ff1e06e74

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl
Algorithm Hash digest
SHA256 37273b9fc8ccb314546d843fd2c40c176bd0f6bece345c718e1396e2c1d3446a
MD5 3f8ef7adf1367625eca5bda64845deb0
BLAKE2b-256 488808f6549ec856a78b457326c153068a460daa25cb14913f0fe3651ad0a8fd

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 7f12e9cc510d6c79ca6dd21c526f1caf70de21f6f5e290ea5665d2d122c17474
MD5 aadf506092e683ec8d08d70de16967d4
BLAKE2b-256 efbb1f50cdd3ee1f9f1a112929d2ed1df8db70ec22af010eb3ef64ee19222499

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 0b091f68fce46f7c7e9e93ef1fb648b4712c5b74f3b382818f8ef15fa8aa33db
MD5 cd4dc738a18bfc39c29412000bb15622
BLAKE2b-256 8fdfc40da52dc12f0439fac6447899fd540db7134fce5af554b9b8124aee8a27

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7ccc6766452185e8b29505d5b3a844494f66bb3e5dc9308ae381d048a8d5746f
MD5 c0a87438ece49b5ed316099d85a3b373
BLAKE2b-256 52708851a6fbde868ea640670c60855e84d97e776b9b95ad1a80491b4306cfde

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp38-cp38-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp38-cp38-linux_armv7l.whl
Algorithm Hash digest
SHA256 5b0d1c3bbd9b2a40b650e5ab02d016c90925e641c6e116c0c78bccfd44639e37
MD5 b42e7d7a57c8f0d16f85f1f40e99b8b4
BLAKE2b-256 3d5f8d797fd56a55ce5efa070e2b894991e8c5d19b70d4482977ec1f1fbaf1fd

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f34b1f1438256f291700aaa90f3df23f5c32711a93b37d99d531619e3c9728ec
MD5 62803e42d4cc8c7a80ee885beb1d62f0
BLAKE2b-256 3f2748b98d3f539925950116dd56e0680b8c330886c4fbdee1d1d2145840d50b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp37-cp37m-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.12.5-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 20.9 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.12.5-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 ba30b85cdbe99fdbac2fd0d3d0ad6b0c4da03412aad9e823a26394df2fc11046
MD5 ccfceeebbdfbf25e8b20e243ad1983c1
BLAKE2b-256 3aea93cbad80b39c955a12e0f1d35d9349d0d737bc8f38ac75c1693e0683dae3

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.12.5-cp37-cp37m-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.12.5-cp37-cp37m-linux_armv7l.whl
Algorithm Hash digest
SHA256 a19284acc0d44571d6e953c400c2b35aa4c986cb041f6a396dc0b2797258f451
MD5 bf3b76ccd2ae2d9a9a4c4c9e3b32ea92
BLAKE2b-256 43a0ca5df6b50cafc4f36f3330f521b1061be6397569d264813b1aef750b7b7d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page