Skip to main content

No project description provided

Project description

Supported functions

Speech recognition Speech synthesis
✔️ ✔️
Speaker identification Speaker diarization Speaker verification
✔️ ✔️ ✔️
Spoken Language identification Audio tagging Voice activity detection
✔️ ✔️ ✔️
Keyword spotting Add punctuation
✔️ ✔️

Supported platforms

Architecture Android iOS Windows macOS linux
x64 ✔️ ✔️ ✔️ ✔️
x86 ✔️ ✔️
arm64 ✔️ ✔️ ✔️ ✔️ ✔️
arm32 ✔️ ✔️
riscv64 ✔️

Supported programming languages

1. C++ 2. C 3. Python 4. JavaScript
✔️ ✔️ ✔️ ✔️
5. Java 6. C# 7. Kotlin 8. Swift
✔️ ✔️ ✔️ ✔️
9. Go 10. Dart 11. Rust 12. Pascal
✔️ ✔️ ✔️ ✔️

For Rust support, please see sherpa-rs

It also supports WebAssembly.

Introduction

This repository supports running the following functions locally

  • Speech-to-text (i.e., ASR); both streaming and non-streaming are supported
  • Text-to-speech (i.e., TTS)
  • Speaker diarization
  • Speaker identification
  • Speaker verification
  • Spoken language identification
  • Audio tagging
  • VAD (e.g., silero-vad)
  • Keyword spotting

on the following platforms and operating systems:

with the following APIs

  • C++, C, Python, Go, C#
  • Java, Kotlin, JavaScript
  • Swift, Rust
  • Dart, Object Pascal

Links for Huggingface Spaces

You can visit the following Huggingface spaces to try sherpa-onnx without installing anything. All you need is a browser.
Description URL
Speaker diarization Click me
Speech recognition Click me
Speech recognition with Whisper Click me
Speech synthesis Click me
Generate subtitles Click me
Audio tagging Click me
Spoken language identification with Whisper Click me

We also have spaces built using WebAssembly. They are listed below:

Description Huggingface space ModelScope space
Voice activity detection with silero-vad Click me 地址
Real-time speech recognition (Chinese + English) with Zipformer Click me 地址
Real-time speech recognition (Chinese + English) with Paraformer Click me 地址
Real-time speech recognition (Chinese + English + Cantonese) with Paraformer-large Click me 地址
Real-time speech recognition (English) Click me 地址
VAD + speech recognition (Chinese + English + Korean + Japanese + Cantonese) with SenseVoice Click me 地址
VAD + speech recognition (English) with Whisper tiny.en Click me 地址
VAD + speech recognition (English) with Moonshine tiny Click me 地址
VAD + speech recognition (English) with Zipformer trained with GigaSpeech Click me 地址
VAD + speech recognition (Chinese) with Zipformer trained with WenetSpeech Click me 地址
VAD + speech recognition (Japanese) with Zipformer trained with ReazonSpeech Click me 地址
VAD + speech recognition (Thai) with Zipformer trained with GigaSpeech2 Click me 地址
VAD + speech recognition (Chinese 多种方言) with a TeleSpeech-ASR CTC model Click me 地址
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-large Click me 地址
VAD + speech recognition (English + Chinese, 及多种中文方言) with Paraformer-small Click me 地址
Speech synthesis (English) Click me 地址
Speech synthesis (German) Click me 地址
Speaker diarization Click me 地址

Links for pre-built Android APKs

You can find pre-built Android APKs for this repository in the following table
Description URL 中国用户
Speaker diarization Address 点此
Streaming speech recognition Address 点此
Text-to-speech Address 点此
Voice activity detection (VAD) Address 点此
VAD + non-streaming speech recognition Address 点此
Two-pass speech recognition Address 点此
Audio tagging Address 点此
Audio tagging (WearOS) Address 点此
Speaker identification Address 点此
Spoken language identification Address 点此
Keyword spotting Address 点此

Links for pre-built Flutter APPs

Real-time speech recognition

Description URL 中国用户
Streaming speech recognition Address 点此

Text-to-speech

Description URL 中国用户
Android (arm64-v8a, armeabi-v7a, x86_64) Address 点此
Linux (x64) Address 点此
macOS (x64) Address 点此
macOS (arm64) Address 点此
Windows (x64) Address 点此

Note: You need to build from source for iOS.

Links for pre-built Lazarus APPs

Generating subtitles

Description URL 中国用户
Generate subtitles (生成字幕) Address 点此

Links for pre-trained models

Description URL
Speech recognition (speech to text, ASR) Address
Text-to-speech (TTS) Address
VAD Address
Keyword spotting Address
Audio tagging Address
Speaker identification (Speaker ID) Address
Spoken language identification (Language ID) See multi-lingual Whisper ASR models from Speech recognition
Punctuation Address
Speaker segmentation Address

Some pre-trained ASR models (Streaming)

Please see

for more models. The following table lists only SOME of them.

Name Supported Languages Description
sherpa-onnx-streaming-zipformer-bilingual-zh-en-2023-02-20 Chinese, English See also
sherpa-onnx-streaming-zipformer-small-bilingual-zh-en-2023-02-16 Chinese, English See also
sherpa-onnx-streaming-zipformer-zh-14M-2023-02-23 Chinese Suitable for Cortex A7 CPU. See also
sherpa-onnx-streaming-zipformer-en-20M-2023-02-17 English Suitable for Cortex A7 CPU. See also
sherpa-onnx-streaming-zipformer-korean-2024-06-16 Korean See also
sherpa-onnx-streaming-zipformer-fr-2023-04-14 French See also

Some pre-trained ASR models (Non-Streaming)

Please see

for more models. The following table lists only SOME of them.

Name Supported Languages Description
Whisper tiny.en English See also
Moonshine tiny English See also
sherpa-onnx-sense-voice-zh-en-ja-ko-yue-2024-07-17 Chinese, Cantonese, English, Korean, Japanese 支持多种中文方言. See also
sherpa-onnx-paraformer-zh-2024-03-09 Chinese, English 也支持多种中文方言. See also
sherpa-onnx-zipformer-ja-reazonspeech-2024-08-01 Japanese See also
sherpa-onnx-nemo-transducer-giga-am-russian-2024-10-24 Russian See also
sherpa-onnx-nemo-ctc-giga-am-russian-2024-10-24 Russian See also
sherpa-onnx-zipformer-ru-2024-09-18 Russian See also
sherpa-onnx-zipformer-korean-2024-06-24 Korean See also
sherpa-onnx-zipformer-thai-2024-06-20 Thai See also
sherpa-onnx-telespeech-ctc-int8-zh-2024-06-04 Chinese 支持多种方言. See also

Useful links

How to reach us

Please see https://k2-fsa.github.io/sherpa/social-groups.html for 新一代 Kaldi 微信交流群 and QQ 交流群.

Projects using sherpa-onnx

voiceapi

Streaming ASR and TTS based on FastAPI

It shows how to use the ASR and TTS Python APIs with FastAPI.

腾讯会议摸鱼工具 TMSpeech

Uses streaming ASR in C# with graphical user interface.

Video demo in Chinese: 【开源】Windows实时字幕软件(网课/开会必备)

lol互动助手

It uses the JavaScript API of sherpa-onnx along with Electron

Video demo in Chinese: 爆了!炫神教你开打字挂!真正影响胜率的英雄联盟工具!英雄联盟的最后一块拼图!和游戏中的每个人无障碍沟通!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sherpa-onnx-1.10.31.tar.gz (440.0 kB view details)

Uploaded Source

Built Distributions

sherpa_onnx-1.10.31-cp313-cp313-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.13 Windows x86-64

sherpa_onnx-1.10.31-cp313-cp313-win32.whl (18.9 MB view details)

Uploaded CPython 3.13 Windows x86

sherpa_onnx-1.10.31-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.10.31-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.13 macOS 11.0+ x86-64

sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_universal2.whl (34.2 MB view details)

Uploaded CPython 3.13 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

sherpa_onnx-1.10.31-cp312-cp312-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.12 Windows x86-64

sherpa_onnx-1.10.31-cp312-cp312-win32.whl (18.8 MB view details)

Uploaded CPython 3.12 Windows x86

sherpa_onnx-1.10.31-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.10.31-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.12 macOS 11.0+ x86-64

sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_universal2.whl (34.2 MB view details)

Uploaded CPython 3.12 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

sherpa_onnx-1.10.31-cp311-cp311-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.11 Windows x86-64

sherpa_onnx-1.10.31-cp311-cp311-win32.whl (18.9 MB view details)

Uploaded CPython 3.11 Windows x86

sherpa_onnx-1.10.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.10.31-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ x86-64

sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_universal2.whl (34.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

sherpa_onnx-1.10.31-cp311-cp311-linux_armv7l.whl (14.4 MB view details)

Uploaded CPython 3.11

sherpa_onnx-1.10.31-cp310-cp310-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.10 Windows x86-64

sherpa_onnx-1.10.31-cp310-cp310-win32.whl (18.9 MB view details)

Uploaded CPython 3.10 Windows x86

sherpa_onnx-1.10.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.10.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_universal2.whl (34.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

sherpa_onnx-1.10.31-cp310-cp310-linux_armv7l.whl (14.4 MB view details)

Uploaded CPython 3.10

sherpa_onnx-1.10.31-cp39-cp39-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.9 Windows x86-64

sherpa_onnx-1.10.31-cp39-cp39-win32.whl (18.8 MB view details)

Uploaded CPython 3.9 Windows x86

sherpa_onnx-1.10.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.10.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ x86-64

sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_universal2.whl (34.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

sherpa_onnx-1.10.31-cp39-cp39-linux_armv7l.whl (14.4 MB view details)

Uploaded CPython 3.9

sherpa_onnx-1.10.31-cp38-cp38-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

sherpa_onnx-1.10.31-cp38-cp38-win32.whl (18.9 MB view details)

Uploaded CPython 3.8 Windows x86

sherpa_onnx-1.10.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.10.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.8 macOS 11.0+ x86-64

sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_universal2.whl (34.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ universal2 (ARM64, x86-64)

sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_arm64.whl (16.4 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

sherpa_onnx-1.10.31-cp38-cp38-linux_armv7l.whl (14.4 MB view details)

Uploaded CPython 3.8

sherpa_onnx-1.10.31-cp37-cp37m-win_amd64.whl (21.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

sherpa_onnx-1.10.31-cp37-cp37m-win32.whl (18.9 MB view details)

Uploaded CPython 3.7m Windows x86

sherpa_onnx-1.10.31-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.4 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

sherpa_onnx-1.10.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (19.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

sherpa_onnx-1.10.31-cp37-cp37m-macosx_11_0_x86_64.whl (18.5 MB view details)

Uploaded CPython 3.7m macOS 11.0+ x86-64

sherpa_onnx-1.10.31-cp37-cp37m-linux_armv7l.whl (14.4 MB view details)

Uploaded CPython 3.7m

File details

Details for the file sherpa-onnx-1.10.31.tar.gz.

File metadata

  • Download URL: sherpa-onnx-1.10.31.tar.gz
  • Upload date:
  • Size: 440.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for sherpa-onnx-1.10.31.tar.gz
Algorithm Hash digest
SHA256 cdfb1aac83279db61fcf75dfac738578191ac3352cdc1c6adb35fba31db26099
MD5 b7f40e2882e93e30574a04fbc68a44cc
BLAKE2b-256 7c99ae365199e3c1f0aa3eb67296b8a8a1b314f4a823fe70ab32cfea625d15ae

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 97af08e9afef1b740197b6a4ea683c3acb417eea33e1a12c1141c0210298ea20
MD5 1fb2b7f9967451a7075532cdfd45805b
BLAKE2b-256 ae6cfa98ec8fa00c8a8c1b5a749e4b5092aa59a1e39b0190888dd3d3f78dd215

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 ba90281bf8a95cc95535d0cae851c8a164b08c5a368d1c1520bfcd33f86b64ba
MD5 4b4ef26b97d46bc8995a0db215d85d01
BLAKE2b-256 4e95848efe1162a877898aaf6da13a117fd6c6794e626e0318b3b93b441d841e

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e179805bc9132540293604236501ed8716b22fd434f275045ee150dd536275a1
MD5 d532e099e46f4aca9f03792bba8c5e4d
BLAKE2b-256 05f31d06f16df90fe504dd49a6d182e5e5cafd06e89fed8888a9c2955974d39b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a806b1994e1d4e0373bbacd38b2c2ed62f439ed564067fc03d1c871f28d1dc87
MD5 e7869d380ddb7b4163b64c0949d46565
BLAKE2b-256 cb9675802f5284d1247cbf7355dc572b7f04e995b37dfc8b899678e2152154ff

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 6c4bddcb820f3593eab2a7ec62994ecaae059c7f744f88633c7895aa06e55802
MD5 ddf11fcce21851dc3b132d333a910b5e
BLAKE2b-256 c8043dc955450286c50a438b3bff2fa3d8350ca742a456143962f389c67a5d2c

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 d317aba7ed03b936c1729f92e6636a330ca1c67c153a2c5083e9abb9ac9de9bd
MD5 435e0445d52a7503b91f4374ece3c6dd
BLAKE2b-256 8dadb13031989bd57e05d8b806945a29af844c20d52a173b0cfc36b39fa97087

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62a56a239a9dfdf97f4f6550669d67275173cc2844ac1f504fdc4b97f32d3467
MD5 d0d47969d94468dc728d9c4718d5bb80
BLAKE2b-256 8dc5d77a31de1cfebace059d22de0e612aea7a1418cca2e7a4aa7d00ac29e031

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 d3de1d2f3f0feb372849ccc0210907747a3855c1865ca5db1c9de37ad18094e0
MD5 1249b1db5a7b95c8760fccc3f3c1d933
BLAKE2b-256 e17e7e5ead04ab70201b790011d9d53ddd69305bf32b1b7e07b270fd13406895

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 677787bb58ccbcd8dfd2088235fbac491f750af949edeb9d293f311f868fec6f
MD5 9d7c6fca17922ddc8870076516ff51c4
BLAKE2b-256 3375454d9de70e7d1b1810d82c9cc10eb0280dcbcc6ef22a3ebc796f238d3449

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e371a6f6efe7a3b0d13c430e6b0fca54cd06d610add3b74731b7e76beb25dc8a
MD5 d103689796befc48877e11120ca23188
BLAKE2b-256 7ef3d7974ad0fe558c6fddcfe41100c68de0b0de688255a0d16f51f34d7ad63e

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 06bd1416da54cd2d76b4e740613f0bcb1d580d79e26ef66f00407f3889c328fe
MD5 3d6c30433c22377a460950aeca7ad8ad
BLAKE2b-256 6e503325bf02eef8be977cdb1dd388545d2a08e4a65294e9ae6b4b0375d9cb20

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 72ce5997d199062c5734dfd46c02b8ee5ad32aa766a8e06b441557ca190e0e4e
MD5 8140adf1abaa0289101003125926e84d
BLAKE2b-256 94a91066173c8f20d9bf141381e787f4ed6843240ed3b7310136c4bef0821972

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 1d2347d28c9783c371580c9fe52f0ce6e96f4112cfda9fb42cf3edfef3ccf398
MD5 2089538fd4a336e320b288826f89fc69
BLAKE2b-256 75ac639f821670260c2af67fee15ebad64b4968bf366cba26d5703c38c892cd2

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 edd7d829df33a34d4302bf8587b1cb8f83b2d28091d229d8e464264ed1515d32
MD5 27405430b4400a42854bc700653dc91d
BLAKE2b-256 dcc231544bcbf7bb5ee8fef0ab042293c5b1a539bf0e117a5d1c7feaf8e4ce81

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9b255c72a940aa75f7bcb50e24974f2b6d096b086e0988aaf937d4850ae01340
MD5 cf5fd130a78a8636b99120b54498a8d3
BLAKE2b-256 a0b57a6286b98a3566fa8195f2c391c141b5580103d29a457f4d312c1a288cc5

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 35a3702a19f9e54d5ced722ca23cede8cf348e282ae8c87d808a4b4313c88532
MD5 75ed2137959aa8062daf99e31f096c93
BLAKE2b-256 1117b0c187717fb1cdf8d2d46501ab4fb17d90f3d1ce10df01184a8f2dc83651

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e54e12f9b9b752882ee796a9cf4eec2271e40ef2c97e6822214c2c340f543735
MD5 8b2789f9cfdc3fdcf70f54dc0a8bde7d
BLAKE2b-256 ff4f2c7a27f0587eab2cc512809cb9a148de4bf5a94814a3273b4b0f592f86a1

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3c312b4feb40ac7552cc848d881ff6ce981b2637767a927b6de37f5c63adf69a
MD5 e08d8904c2ac08675c7d48b72c81d0e9
BLAKE2b-256 61d2a8a5db0f43338564172d349ffdfe6a585b2d03b3bd42c3db5c1561b2d8bc

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f18ba9344bc55e52dcbd3b3951be4427065d3a6c334c3d00a1a46c2a6bce29b0
MD5 f2fc4735604aa23c269deb30900b8bd9
BLAKE2b-256 2aff3217e4771382f60b093f267035c13d0881c3c1a124bd7635d232345ce210

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 eac8a7a9d24088cef8ab8ec0e2b75c9c4c43a963cf0b7b1eb13c41f240247a5f
MD5 c188b7383bebf231bd20b9d07038da7e
BLAKE2b-256 3749ea718638e4b607dc6806345784408ea3c17785fce4a49a8152773714e313

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95b3e654205694f8c06b8fa52dabf924d7c4e749c76472cd849be8a19f03bfec
MD5 07d90d2d1dcfb487d9b436825e3b0c03
BLAKE2b-256 078f971aa35381f5d3f09ec38277c47ce2c4de6937d20207c1c58cc362a12175

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp311-cp311-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp311-cp311-linux_armv7l.whl
Algorithm Hash digest
SHA256 67879a46d9d65a05c60df4d5454d1256d8f796f8b54beb1eab84e4c447e25f3e
MD5 54632df3ea5c25986d470c362d9d0eca
BLAKE2b-256 0af1284decbc98f4288be5248a2753b0297761f351786674c58343275fdd12ae

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 a7669cd8c2628675d3362f25579d55b4e501776bb451c20754fcf3956b0720ee
MD5 f1794e6efe76a04ec3ea0846c13e06ac
BLAKE2b-256 b0c62ae2b8baabdc7014fe0f7a5be7ab26867b9995da2e3f492c3f5113019da3

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ebe45e2283150bd98764743bbc77e09a02f00be3448455b096534311b1f0d42b
MD5 d52a5bf3bf280074b21f20206cca35b1
BLAKE2b-256 6e996cf7acac36159549f1d3e705922d6c35a974de63838da288a13dd79d131e

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b59f905e127e4e058ab8a0b3c876630ccc83826018de6a1af4c3c02007c2abbd
MD5 76f0bb9b87d93aafd4ad175f0f8680ac
BLAKE2b-256 5af58dc8002ed5e602ba2a60a7c4bfec94469e09e2b2ebbf8313c60853c42a03

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 71e6f2059e9f96cb98db91bca379042278532b3dbb19c66df8f76ca114b4300f
MD5 313ed3f60519228d5924e948f2f2907e
BLAKE2b-256 005571272d417d62c1b0e867bf838c2701c68aa7df1be06384cace9f36382f15

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 339bf0c4610c8e4d83e32a7e69c3752779038ad3399ed49689b0ec3a28d5022e
MD5 c6591b1a9881e78214754cf397ec937a
BLAKE2b-256 c505987e494deaf29f129368fab4e2120fb6615eb007afc971e0fbe953d9178b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 5bf3b80e5fac2e6f8059cebdadd360b8175ef574b949b59714a43d704ab7daa4
MD5 0dd2580f57a4b0046781918d45dd3566
BLAKE2b-256 c54d0336a7ad4685bf336d84c9a029744561cbf43839d9ed6a82a889a7ff7029

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 18d3ba2eab0ef177fa9a01ae112613b65f01a916cd5b5e156f671bc4a9b57795
MD5 349325db09b8fb11935fb2e0805c6015
BLAKE2b-256 78c135486c7708e709a91c303bfc85cb9b1eb3f62dcc4200cff10abcf08d2f07

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp310-cp310-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp310-cp310-linux_armv7l.whl
Algorithm Hash digest
SHA256 b59176afdd4efd8100f7544c11f8fa83e4b961c32e19a254e70a6123e3d55f98
MD5 43efe0434d6668e829a5d5f255f8540a
BLAKE2b-256 cef202caf69dca1b2f0eac8cf4fd1232a16434c4cdfa5cebcdf111f5cb027aa6

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e53a6e40da6cabe45292a8449b5d76b74090566f6d848a14a383eb8667cba0ba
MD5 40284117ee50e7164025c16b4b0095d3
BLAKE2b-256 901bdb5a138e34539da553c47cb99616d8191fa6fb0ec16a0b6d8bb6ff0a8fe9

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.10.31-cp39-cp39-win32.whl
  • Upload date:
  • Size: 18.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 dd5786ab6ed76343d3a2c5e907e08ea1713f00b80980022476d3c783a3d3a726
MD5 107942ac2706f0956df9cffe4decaac1
BLAKE2b-256 28381bcc55aa028d5d2ef8b1f24f2674474dd82a9c9de20cbaa95e0db5cfbd96

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 34cd9849dc0241e1dbc59d09cba32c03e197f339732b6787e3b725701d89a9bd
MD5 dabe1ac05acbed558a3beab6dcc53fc0
BLAKE2b-256 8bae500d7a2b5c8d74c51d67b0fed16f50b229aef638f4d9c283a6476460e5cd

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 863334fab88b5e9fa69dd6b021a441c1f644ef165895fbbd9f1974b279a3388d
MD5 0cd5df4cb3b05dea4969b4a1d83609e5
BLAKE2b-256 c042a58a58158ee3bda237503afe8927bf98ea0335752fb0442ca70d754e3307

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 5337ab52d39ac94e2494d2e43d518305cca6d01c5499eaf325bc7050f6418220
MD5 c0af2020d124fd6cf6be54734a93f57c
BLAKE2b-256 f61c0882f6085fe277a011ae23354993380b5bb75860145df60ac5a55af65143

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 513f7152a4f1ea18a547d573713213bc13eca7b7023b57ba995d33520183ddc8
MD5 93b9fe9af6725a01c5b3289b3c1f84c7
BLAKE2b-256 86eb517866db3949c85a418ddb16eefbec167e4e3dad5a3c7b5a74c57b0ddee9

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 00ca5224b028baf67c3d9c63f409a37484b1dff5e5611fa0ddc7dc4f6f50ecc2
MD5 2502025db67c1d3c2d2144ea0c6fa642
BLAKE2b-256 22962fe20a422e8d03afd88796d676230819a54877e4b95e07f03910ad0e979c

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp39-cp39-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp39-cp39-linux_armv7l.whl
Algorithm Hash digest
SHA256 a4468714b4eb2a29e62dbdd1bfd7072c50817b3eb10213d829502b8b0ba840f3
MD5 2a1ce52fc8c7f174c147ed1097610548
BLAKE2b-256 1788ff4bd5e2e48e385c75a26c70d75223e27e3b55c41756b0dfb558e3d99c82

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 da185b060338626898a7656754fdf1f4e0ac51877ef3deb9412629705c13916e
MD5 6f0f4a04c9691e85eeee61ad6fb46ecb
BLAKE2b-256 abef10bd0c7f807ddbcf57d339360edd1817b0d31af9e77765ee499d1688c97b

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-win32.whl.

File metadata

  • Download URL: sherpa_onnx-1.10.31-cp38-cp38-win32.whl
  • Upload date:
  • Size: 18.9 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5d52d881cacded5f2cd198bcca8f9081593f96a49d365a2be9796e095550d319
MD5 1f0d01de657794c8a99e039349dfacee
BLAKE2b-256 c5431820ce9d1124239c9f99d0c7ee962cd3288c4bce5f84210c4b68d9abc431

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b3f12b1822cea922fa69ab06c11fe019d5ab649ddd588a5671172ebcd98980b2
MD5 a5581d5615b49d2316a501e4269f3f26
BLAKE2b-256 f264a8c8db586e592225e868bc81f9dd1080ea2c8280bc48724656353572803d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9cdaeca12f43a24b635209b3ef9990b6b9a66e5bfaaf27c45a2280eb31645ce9
MD5 2c060a4bb8feae96f78e23380de7fbce
BLAKE2b-256 433433e74056b8bf4d7c7077634e50ac7a2ea8cb831d72d349ee7403c9174a12

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 2e096ff3aad9890b1447c6ef44687ad2d012e806161382d953f88c1aba14f32c
MD5 83800e969fbf74903d89c4fe10bf95df
BLAKE2b-256 8d4d677a13a13c3c68a3ad50e7691dc2f213fa6b5c67eab592798d3c93a298b6

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_universal2.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_universal2.whl
Algorithm Hash digest
SHA256 43ba013af8563edb23843ffde0c17c7545e9852f403ef260e737dd63da8f6cb9
MD5 07a5b1fa04e5f93b46bc086b640f0105
BLAKE2b-256 faa3f871bc85f08ff85cf2a8a815792dc41c0e5df3fae4f812e8837fbf90fedd

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f285cb5f11b359e146bff7ce24a8e2acb3beba8dd35b8113ce09132799b7b4d1
MD5 5b6f292de2b7aff45a1ef97b02cf036b
BLAKE2b-256 d914c0ed5f1b1bf93233f8be43106e9cd9b2a91dbbd21d34c9229f14a5f833ab

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp38-cp38-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp38-cp38-linux_armv7l.whl
Algorithm Hash digest
SHA256 503ffe457bb7a3f6550a1d85cfbe76e39e39dbc2165c3521e55dbae448abe8bd
MD5 99b7d674fa70e1c747fec6b98ca1bcda
BLAKE2b-256 23afdff46c1e0f3a1b9e0fc32f342214a6d7499710c3b5f2d36897f8f29a8c02

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e2f9a92283fbff465204384b9760a76d402b26b43eeb73d581747146dd976061
MD5 04c81f27860b455ebe5d44f678a11456
BLAKE2b-256 719bd0b9338aec0186af6ad21ace893c60a13e6c4900d390ab950a65197b0021

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2d2c3ef8a95f04cdd7735f66f7c5fc837a763988fba8505a26657d15b569b55e
MD5 846eec9a513cbbff47a3ed7277a8aae2
BLAKE2b-256 eaa9d8703ec4947a5869a2a818b677cd0dec0a6f70254a4cd513a3d1dd701293

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a565bc56bfe982143b100aaa6dff7a0933dcc0c85197edcb6eeb3d09265f0576
MD5 c84537456d902e3b1a6b84c981ff71a5
BLAKE2b-256 f4f01bddd24caa5ce236dd9ec65e1c6b95bd06fc3a3a08ed1c86acc9ec502a2d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9c9998668f9eea25d3a2b3abee29e59ede3171b6c418c70ea2cd1c95f6f27dca
MD5 cf6bf1aeb128e3c1110c60b9d08eaa57
BLAKE2b-256 fb293db42e766e5599bcaf900984acc58e2d6d41f4c977d781e70933d4edc78d

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp37-cp37m-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp37-cp37m-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 76d225a5d1eff41486a75f3774accadc1ddfb71d12e53fb048a1d346e4081c00
MD5 2dd749feb63515fd49dcb91724a7b342
BLAKE2b-256 82ff489a0a91315215a6e9c949a889427bdb592d1c12aa7d7cc99699d75550d1

See more details on using hashes here.

File details

Details for the file sherpa_onnx-1.10.31-cp37-cp37m-linux_armv7l.whl.

File metadata

File hashes

Hashes for sherpa_onnx-1.10.31-cp37-cp37m-linux_armv7l.whl
Algorithm Hash digest
SHA256 d0f27f7db75f904b56f64bb9ea87bdf87434ef56dcf5dc7a3db327f17fb88982
MD5 dc7a99f8c83ce4b1ef3ee68caeb3eda7
BLAKE2b-256 7cd4de61698b7f92afe89d6d344a72db1dfc0c6fb509c0ce70a972f79d417a5e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page