Skip to main content

sequential Information Bottleneck

Project description

sequential Information Bottleneck (sIB)

GitHub Actions CI status

Scope

This project provides an efficient implementation of the text clustering algorithm "sequential Information Bottleneck" (sIB), introduced by Slonim, Friedman and Tishby (2002). The project is packaged as a python library with a cython-wrapped C++ extension for the partition optimization code. A pure python implementation is included as well. The implementation is documented here.

Installation

pip install sib-clustering

Usage

The main class in this library is SIB, which implements the clustering interface of SciKit Learn, providing methods such as fit(), fit_transform(), fit_predict(), etc.

The sample code below clusters the 18.8K documents of the 20-News-Groups dataset into 20 clusters:

import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.datasets import fetch_20newsgroups
from sklearn import metrics
from sib import SIB

# read the dataset
dataset = fetch_20newsgroups(subset='all', categories=None,
                             shuffle=True, random_state=256)

gold_labels = dataset.target
n_clusters = np.unique(gold_labels).shape[0]

# create count vectors using the 10K most frequent words
vectorizer = CountVectorizer(max_features=10000)
X = vectorizer.fit_transform(dataset.data)

# SIB initialization and clustering; parameters:
# perform 10 random initializations (n_init=10); the best one is returned.
# up to 15 optimization iterations in each initialization (max_iter=15)
# use all cores in the running machine for parallel execution (n_jobs=-1)
sib = SIB(n_clusters=n_clusters, random_state=128, n_init=10,
          n_jobs=-1, max_iter=15, verbose=True)
sib.fit(X)

# report standard clustering metrics
print("Homogeneity: %0.3f" % metrics.homogeneity_score(gold_labels, sib.labels_))
print("Completeness: %0.3f" % metrics.completeness_score(gold_labels, sib.labels_))
print("V-measure: %0.3f" % metrics.v_measure_score(gold_labels, sib.labels_))
print("Adjusted Rand-Index: %.3f" % metrics.adjusted_rand_score(gold_labels, sib.labels_))

Expected result:

sIB information stats on best partition:
	I(T;Y) = 0.5685, H(T) = 4.1987
	I(T;Y)/I(X;Y) = 0.1468
	H(T)/H(X) = 0.2956
Homogeneity: 0.616
Completeness: 0.633
V-measure: 0.624
Adjusted Rand-Index: 0.507

See the Examples directory for more illustrations and a comparison against K-Means.

License

Copyright IBM Corporation 2020

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

If you would like to see the detailed LICENSE click here.

Authors

If you have any questions or issues you can create a new issue here.

Reference

N. Slonim, N. Friedman, and N. Tishby (2002). Unsupervised Document Classification using Sequential Information Maximization. SIGIR 2002. https://dl.acm.org/doi/abs/10.1145/564376.564401

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sib_clustering-0.2.7.tar.gz (1.6 MB view details)

Uploaded Source

Built Distributions

sib_clustering-0.2.7-cp313-cp313-win_amd64.whl (266.2 kB view details)

Uploaded CPython 3.13Windows x86-64

sib_clustering-0.2.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (742.5 kB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

sib_clustering-0.2.7-cp313-cp313-macosx_11_0_arm64.whl (272.0 kB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

sib_clustering-0.2.7-cp313-cp313-macosx_10_13_x86_64.whl (281.7 kB view details)

Uploaded CPython 3.13macOS 10.13+ x86-64

sib_clustering-0.2.7-cp313-cp313-macosx_10_13_universal2.whl (371.4 kB view details)

Uploaded CPython 3.13macOS 10.13+ universal2 (ARM64, x86-64)

sib_clustering-0.2.7-cp312-cp312-win_amd64.whl (266.5 kB view details)

Uploaded CPython 3.12Windows x86-64

sib_clustering-0.2.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (750.3 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

sib_clustering-0.2.7-cp312-cp312-macosx_11_0_arm64.whl (273.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

sib_clustering-0.2.7-cp312-cp312-macosx_10_13_x86_64.whl (282.7 kB view details)

Uploaded CPython 3.12macOS 10.13+ x86-64

sib_clustering-0.2.7-cp312-cp312-macosx_10_13_universal2.whl (373.4 kB view details)

Uploaded CPython 3.12macOS 10.13+ universal2 (ARM64, x86-64)

sib_clustering-0.2.7-cp311-cp311-win_amd64.whl (265.1 kB view details)

Uploaded CPython 3.11Windows x86-64

sib_clustering-0.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (753.4 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

sib_clustering-0.2.7-cp311-cp311-macosx_11_0_arm64.whl (271.7 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

sib_clustering-0.2.7-cp311-cp311-macosx_10_9_x86_64.whl (280.6 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

sib_clustering-0.2.7-cp311-cp311-macosx_10_9_universal2.whl (369.9 kB view details)

Uploaded CPython 3.11macOS 10.9+ universal2 (ARM64, x86-64)

sib_clustering-0.2.7-cp310-cp310-win_amd64.whl (265.1 kB view details)

Uploaded CPython 3.10Windows x86-64

sib_clustering-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (726.0 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

sib_clustering-0.2.7-cp310-cp310-macosx_11_0_arm64.whl (271.2 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

sib_clustering-0.2.7-cp310-cp310-macosx_10_9_x86_64.whl (280.3 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

sib_clustering-0.2.7-cp310-cp310-macosx_10_9_universal2.whl (368.9 kB view details)

Uploaded CPython 3.10macOS 10.9+ universal2 (ARM64, x86-64)

sib_clustering-0.2.7-cp39-cp39-win_amd64.whl (265.7 kB view details)

Uploaded CPython 3.9Windows x86-64

sib_clustering-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (724.9 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

sib_clustering-0.2.7-cp39-cp39-macosx_11_0_arm64.whl (271.7 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

sib_clustering-0.2.7-cp39-cp39-macosx_10_9_x86_64.whl (280.9 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

sib_clustering-0.2.7-cp39-cp39-macosx_10_9_universal2.whl (370.2 kB view details)

Uploaded CPython 3.9macOS 10.9+ universal2 (ARM64, x86-64)

sib_clustering-0.2.7-cp38-cp38-win_amd64.whl (266.0 kB view details)

Uploaded CPython 3.8Windows x86-64

sib_clustering-0.2.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (741.4 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

sib_clustering-0.2.7-cp38-cp38-macosx_11_0_arm64.whl (273.3 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

sib_clustering-0.2.7-cp38-cp38-macosx_10_9_x86_64.whl (281.8 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

sib_clustering-0.2.7-cp38-cp38-macosx_10_9_universal2.whl (373.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file sib_clustering-0.2.7.tar.gz.

File metadata

  • Download URL: sib_clustering-0.2.7.tar.gz
  • Upload date:
  • Size: 1.6 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.12.8

File hashes

Hashes for sib_clustering-0.2.7.tar.gz
Algorithm Hash digest
SHA256 0bbcd4cd25f9ffe83968cc1504d1239be650241d82ac4f4d0f8da90c024c3f52
MD5 066d49c972b825ebefeb2fb67755e2d4
BLAKE2b-256 8921748d062a2beb0ed737b252ced5e073a01d3f76fb8024e998955eb6ca6dde

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 c105e7c399c2eb5af61f2ce097dda8f0439e96e190f47ea5e51126a9dc89ccc9
MD5 c76810dd03310f9808722859b620dc5d
BLAKE2b-256 759c378e05363c737590353dd10653dbb78302cca8477824a6e9cb63d4feac28

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2bebb42d4d05b180f4bc71238421b16e3407b5248340215f88b1563878eaefa2
MD5 fee13b2379835430dbee562eeff7338b
BLAKE2b-256 c5711886f6a8e2733cd5108c249a237315e41d2aae838695b118de7aa1198bd6

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 413c17380a40383e4454cf51da7ad621f91aff905da2a8744dd1596e600ac569
MD5 a0699021326634f9bc059231c041e797
BLAKE2b-256 ddd096b342cad1068cc5e8c08a8444ffd9684174b6afc6bf48ce5592fd8f8156

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6c8ee70f189e110e9988509a517567e08a0cecfeab1a256f893b93e448792f6e
MD5 dddeb0f80d5da43ce989d0eb76756121
BLAKE2b-256 058b829fbc34af4aeeb425547c4693bf762ac58458a526f5c5f01f5a61957730

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp313-cp313-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp313-cp313-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 85127745d2c7a89c5f997a10c692983869de568036ce1aa442d8088fbd705375
MD5 7944f867148d479b2251e7e2869f6b33
BLAKE2b-256 75e60b5ab47558b2d5c11944c8ce66613b082bf17b390392b57e4939d9e75e00

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6c78bf9ff0670e8145cc44c5745ee5596faa14282762d72c3d89221a53ab65cf
MD5 fc6d39a64175185a7a27cd884cdc8454
BLAKE2b-256 0c1be1231244f96d49b233f1b80cbfa6eb943c1ac341e10d1fc080f946b2dfbb

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f81d65251e22c3c54e6d9b3d4060ee9b552112b573e8d49b77048a2e179f3abc
MD5 9e073b1b2904b9d85eb23409b1e8230a
BLAKE2b-256 693d50f6a89b4e9cc7efa96dda344182d196912587090e8312962961298574f5

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a78332748c8cea7efd731e36dfbed6b977e8c2d6e9a348b45aec765649487c14
MD5 ffdcf50879159bb3f9b800cb797d01d7
BLAKE2b-256 e2b30c0dfc346342316c6b64dd9afe1f3c5a9122338e41fbebae2b00797bc8c2

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 0da95825ebb4da9f30e1fcf6ca6d3151d5dde383d3f540b29a1b22c201a0b69e
MD5 09588e3e50f66d55bf8a169c0082099e
BLAKE2b-256 d2fe801a42e8ec1986c0970d6bd39ca3d556c8f1fbb396108d4b9343da76d6be

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp312-cp312-macosx_10_13_universal2.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp312-cp312-macosx_10_13_universal2.whl
Algorithm Hash digest
SHA256 2cc519bc040a212827382bcf69942bc0a058d1ba71eebd48bea44ccdc0639970
MD5 beb2bdeba244519623ad4fd613d7ea94
BLAKE2b-256 900c1f671fb575560a81fb567a58fe8bdc0007d679bcbea93bceef69f9ddbbb0

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0055be3313d2c86de4185473e874253034cdcd7b3109960ee9231746ba86aae6
MD5 b0546c91a305d22a50ba44f2f767e175
BLAKE2b-256 05ed62885bd8b8cacc684308cd39725fb211c7c0eb259a90271aea382c782ed6

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 faa99c7157bb931eb9d74c82436070bfce180631fb9b3c3e539f80b74c43d921
MD5 89465e235492fd206e019ddcf385b445
BLAKE2b-256 eefb50a4c01a9286ff9e27253167ea9908800a45f57592375548e3ef44f66e7f

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4715ecd2af33f507207dbef1acd7b51391c7a7cd73f300c503a6f30123901647
MD5 56471ad2bcb7a0ff1cb7c6e0e7ee77fe
BLAKE2b-256 148a0edda4443820b60e97de8b27f0da57dad3ac9edafb268219c64baebe471a

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7d265be4ba38e54d2c9b73461e9a5cb02f8130533bd5ecb3e0471093255bb7b3
MD5 4bf53759e338bd0aac2a1f9e905fea6f
BLAKE2b-256 22429ef25c6a21a287a68686774b5872901e86c95a6e56f109224835c7989812

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 45ff0687b13744aa3967fdf4fd4ad0bd0e8cc59c4e7462bb6b2774441218e8fe
MD5 204237fbbee4f2f6b0012651cad64a16
BLAKE2b-256 41778a348ab03035e8dff4b2b350e2e9a45f37c79acb104993f58fd65a772307

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 70217a6038578412ad0a8c8713ed7f2849f49db3414feace5639c52fa18dfd0d
MD5 eca71451a9f36fe9261966c728d3be8f
BLAKE2b-256 a6dbb9bdcebacb49581ecc915064e0b78da3dd75260960680c93226cc120f30c

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b1ecf0729ef365ce66eca2e1bc6d208d6938f9183ef9a1329bf383a3f218518e
MD5 244921e9e86b81fbca091b45251d4d61
BLAKE2b-256 b82f9d149500c84dee7ab439fd307548672cbcc43db95424e93d7869f561b602

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b6b0eac4a82ffa6d891c57abb7318a2b5e466b7eb4b5e595ee6d2e75369d6a77
MD5 8b12218e444f37b02eef0dea0d762d6f
BLAKE2b-256 4c869fd699c35278884f446079f7fe649fd44b3b299b758ffd420a5dd9befd84

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e670a791314d4fd9c6099ccbd74476e81008abe2c217999bb4998d34177c4b3e
MD5 550701d8bb409bac3b2f570dc0bebbd7
BLAKE2b-256 abf01faf026df5b0ec42c1d5de9f9e6aa94975996d4cc9d4c24bba00fe9f3377

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8dc6e2f0814d708390090d227dda5337860316e64839abe700263473951baea2
MD5 0a99785134c6808939d323f20f6378d8
BLAKE2b-256 27a86d61705edfab537463fc6f44a4b1139b4f36064ae6c5cfba6bb12a1bef31

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 53088081ff50edba2d1e1e61f60abacb2ec6dd4934d7b6455ab1c17486a23822
MD5 5a0f14e5bad29144340f0b768faf2ccc
BLAKE2b-256 0d945834b775c9870952e3b738e24f5ae8a2308d63d601e7be2957972ec2a596

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8db64405d6e701ed0396c64679db6ff2d7f6859ebfea1c771cb8fcc35b66b7be
MD5 e2a3582e2598468dad5fa1a98bb2ea9f
BLAKE2b-256 66d0dd50e33e07fe4efb37a024981bbfd39aa8c38a4f1c07f577eede2625ac38

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 84f430c50a532a462e65fb27fc830592f11329901f481cd096c9b033ce4d6067
MD5 4adb458ee17ef08900a02deb0a0723e7
BLAKE2b-256 790cb12919d4abb303b0912745884b75e2f9c2fc4fd91b0c6c97480fcc28d366

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e68f62309d68be2ffd25cb01ff83a06737a3f28ee84ddc3a07d0056382870dd0
MD5 e2ef1db7ec22a14909c31b535754833e
BLAKE2b-256 f81d3c70598d8d26808da02506a77df384b6ced99a37d1cdabad965417b5ea91

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 ee4bf60f57faad142a1c8928f5c4a6fab99ecf09664946492a80d89767df99d9
MD5 94f04bc68e051d8ac8311e2d00948ba4
BLAKE2b-256 a6c988a6259fab48d252f91e4024a316ad757e094ce27af41ccce8e6ff931670

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 ebffdcf3a3f197a9498e42e4c7761e96cdce9ed8268a6ecefd6a5c59d7d7f00f
MD5 5bbb209ee25a3c14662bb60218adbdf5
BLAKE2b-256 25fb9771fbff3a50139222fe94dd2f5180c00b314281c0d400f47c0cc8224cce

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa33b59b50aa2d53087f0bbc49b424b613fa0b723f3bb8fea4ddc87f660aaba0
MD5 cc47f1951a83c439c003355233f8072c
BLAKE2b-256 5d6865cc3e51ff151b005d1d77940dec1eb966dc4cdcb9c63e61733d8e125ab0

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d7675bf8e64e16a970ed42625ab35d4dad2dadce1203ab494b68f7bb4dff2732
MD5 e5a8194f1f0a04a939ce7092fad636ca
BLAKE2b-256 77af19b34d54773800e1943de79ef2a93195ae1e52c8438657ab5af32d4b633f

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1b5fd4ab5c3901edff191c0d46c9b1aedffc65588ba6ce9b6e1cb3cea4d097bc
MD5 e9cb03bc5d1658023a5a6c919b66aefe
BLAKE2b-256 24b418d881ec58ad28e6fcfd86c5766b1a12f583e3d57d295fea6730093fd7cf

See more details on using hashes here.

File details

Details for the file sib_clustering-0.2.7-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for sib_clustering-0.2.7-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 17ff2a7bf7d922d3c265cf8cdf0890b916ac906580f37cc51a35d8caeccd0f01
MD5 6bb64a070d0d62be8d2c5c5a5ba86f25
BLAKE2b-256 59c393f9ac1c365032323d23234eb548387d590505cb62e2c16d696c2d2a4c0d

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page