Skip to main content

SigProfiler plotting tool

Project description

Docs License Build Status

SigProfilerPlotting

SigProfilerPlotting provides a standard tool for displaying all types of mutational signatures as well as all types of mutational patterns in cancer genomes. The tool seamlessly integrates with other SigProfiler tools.

INTRODUCTION

The purpose of this document is to provide a guide for using the SigProfilerPlotting framework and associated functions/tools to visualize the output from SigProfilerExtraction and SigProfilerSimulator. An extensive Wiki page detailing the usage of this tool can be found at https://osf.io/2aj6t/wiki/home.

For users that prefer working in an R environment, a wrapper package is provided and can be found and installed from: https://github.com/AlexandrovLab/SigProfilerPlottingR

schematic

PREREQUISITES

The framework is written in PYTHON, however, it also requires the following software with the given versions (or newer):

  • PYTHON version 3.4 or newer
  • SigProfilerMatrixGenerator (recommended)

QUICK START GUIDE

This section will guide you through the minimum steps required to plot mutational matrices:

  1. Install the python package using pip:
                          pip install SigProfilerPlotting
  1. Plot mutational matrices from a Python session or using the Command Line Interface (CLI) as follows:

Using the Python session, the command is as follows:

$ python3
>> import sigProfilerPlotting as sigPlt
>> sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)

The required parameters are:

sigPlt.plotSBS(matrix_path, output_path, project, plot_type)

Using the CLI, the command is as follows:

SigProfilerPlotting plotSBS <matrix_path> <output_path> <project> <plot_type>
  1. The final plots are saved into the user-provided output folder.

Single Base Substitution, Double Base Substitution, and Indel Plotting

AVAILABLE FUNCTIONS

import sigProfilerPlotting as sigPlt

sigPlt.plotSBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotDBS(matrix_path, output_path, project, plot_type, percentage=False)
sigPlt.plotID(matrix_path, output_path, project, plot_type, percentage=False)

Copy Number and Structural Variant Plotting

import sigProfilerPlotting as sigPlt

matrix_path = "./sigProfilerPlotting/examples/input/breast_cancer_samples_example.CNV48.all" #Output of CNVMatrixGenerator
output_path = "./sigProfilerPlotting/examples/output/"
project = "Breast"

AVAILABLE FUNCTIONS

Multi-page pdf of CNV or SV signatures

sigPlt.plotCNV(matrix_path, output_path, project, percentage=True, aggregate=False) #plotting of CNV signatures
sigPlt.plotSV(matrix_path, output_path, project, percentage=True, aggregate=False) #plotting of SV signatures

Multi-page pdf of CNV or SV counts

sigPlt.plotCNV(matrix_path, output_path, project, percentage=False, aggregate=False) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project,percentage=False, aggregate=False) #plotting of SV counts

Single pdf of CNV or SV counts per sample for a given cancer type/project

sigPlt.plotCNV(matrix_path, output_path, project, percentage=False, aggregate=True) #plotting of CNV counts
sigPlt.plotSV(matrix_path, output_path, project, percentage, aggregate=True) #plotting of SV counts

matrix_path -> path to the mutational matrix of interest

output_path -> desired output path

project -> name of unique sample set

plot_type -> context of the mutational matrix (96, 192, 78, 94, etc.)

percentage -> Boolean: plot the mutational matrix as percentages of the sample's total mutation count. Default is False

To create a sample portrait, ensure that you have a matrix for all required contexts (SBS-6, SBS-24, SBS-96, SBS-384, SBS-1536, DBS-78, DBS-312, ID-83, ID-28, ID-96)

from sigProfilerPlotting import sample_portrait as sP
sP.samplePortrait(sample_matrices_path, output_path, project, percentage=False)

EXAMPLE

This package comes with an example test for each plot type. Run the script plot_example.py from within the examples directory in the downloaded repo after installation:

python3 sigProfilerPlotting/examples/plot_example.py

This example will create plots for each context for each of the included four samples. These plots will be saved within the sigProfilerPlotting/examples/output/ folder.

CITATION

Bergstrom EN, Huang MN, Mahto U, Barnes M, Stratton MR, Rozen SG, Alexandrov LB: SigProfilerMatrixGenerator: a tool for visualizing and exploring patterns of small mutational events. BMC Genomics 2019, 20:685 https://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-019-6041-2

COPYRIGHT

Copyright (c) 2020, Erik Bergstrom [Alexandrov Lab] All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

CONTACT INFORMATION

Please address any queries or bug reports to Erik Bergstrom at ebergstr@eng.ucsd.edu

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

sigprofilerplotting-1.4.3.tar.gz (2.8 MB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

sigprofilerplotting-1.4.3-py3-none-any.whl (2.8 MB view details)

Uploaded Python 3

File details

Details for the file sigprofilerplotting-1.4.3.tar.gz.

File metadata

  • Download URL: sigprofilerplotting-1.4.3.tar.gz
  • Upload date:
  • Size: 2.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.2.0 CPython/3.12.12

File hashes

Hashes for sigprofilerplotting-1.4.3.tar.gz
Algorithm Hash digest
SHA256 0e72603798eb00d93a8d546091ce55a372e373300203fff795fafb120a0d4465
MD5 d79a3b3e3854a6debbc76d81f7085441
BLAKE2b-256 a46023522b004b2bd395df6c95c3d60706cbaa6876217299e89d2cb6d306cf44

See more details on using hashes here.

File details

Details for the file sigprofilerplotting-1.4.3-py3-none-any.whl.

File metadata

File hashes

Hashes for sigprofilerplotting-1.4.3-py3-none-any.whl
Algorithm Hash digest
SHA256 1faafe03c48f3591172feca3f28c0d3aba11f35def1a2aad7893771de48c932f
MD5 98a532c4f8e7ca550f879a1f631ba899
BLAKE2b-256 618edada4344aa3098d2114d355b9de6f34b889f4d1d9bb70c01ff92de9970cd

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page