Skip to main content

An easy-to-use Library for interacting with language models.

Project description

SimplerLLM

License: MIT Join the Discord chat!

Your Easy Pass to Advanced AI - A comprehensive Python library for simplified Large Language Model interactions.

Overview

SimplerLLM is an open-source Python library designed to simplify interactions with Large Language Models (LLMs) for researchers, developers, and AI enthusiasts. It provides a unified interface for multiple LLM providers, robust tools for content processing, and advanced features like reliable failover systems and intelligent routing.

📚 Full Documentation

Installation

pip install simplerllm

Optional Dependencies

For voice/audio features (AudioPlayer file playback):

pip install simplerllm[voice]
# Or install pygame directly:
pip install pygame>=2.5.0

Key Features

🔗 Unified LLM Interface

  • 8 LLM Providers: OpenAI, Anthropic, Google Gemini, Cohere, OpenRouter, DeepSeek, and Ollama
  • Consistent API: Same interface across all providers
  • 100+ Models: Access to diverse models through OpenRouter integration
  • Async Support: Full asynchronous capabilities

🛡️ Reliability & Failover

  • Reliable LLM: Automatic failover between primary and secondary providers
  • Retry Logic: Built-in exponential backoff for failed requests
  • Validation: Automatic provider validation during initialization

🎯 Structured Output

  • Pydantic Integration: Generate validated JSON responses
  • Type Safety: Automatic validation and parsing
  • Retry Logic: Automatic retry on validation failures

🔍 Vector Operations

  • Multiple Providers: OpenAI, Voyage AI, and Cohere embeddings
  • Local & Cloud Storage: Local vector database and Qdrant integration
  • Semantic Search: Advanced similarity search capabilities

🧠 Intelligent Routing

  • LLM Router: AI-powered content routing and selection
  • Metadata Filtering: Route based on content metadata
  • Confidence Scoring: Intelligent selection with confidence metrics

🛠️ Advanced Tools

  • Content Loading: PDF, DOCX, web pages, and more
  • Text Chunking: Semantic, sentence, and paragraph-based chunking
  • Search Integration: Serper and Value Serp APIs
  • Prompt Templates: Dynamic prompt generation and management

Quick Start

Basic LLM Usage

from SimplerLLM.language.llm import LLM, LLMProvider

# Create LLM instance
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")

# Generate response
response = llm.generate_response(prompt="Explain quantum computing in simple terms")
print(response)

All Supported Providers

from SimplerLLM.language.llm import LLM, LLMProvider

# OpenAI
openai_llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")

# Anthropic Claude
anthropic_llm = LLM.create(provider=LLMProvider.ANTHROPIC, model_name="claude-3-5-sonnet-20241022")

# Google Gemini
gemini_llm = LLM.create(provider=LLMProvider.GEMINI, model_name="gemini-1.5-pro")

# Cohere
cohere_llm = LLM.create(provider=LLMProvider.COHERE, model_name="command-r-plus")

# OpenRouter (Access to 100+ models)
openrouter_llm = LLM.create(provider=LLMProvider.OPENROUTER, model_name="openai/gpt-4o")

# DeepSeek
deepseek_llm = LLM.create(provider=LLMProvider.DEEPSEEK, model_name="deepseek-chat")

# Ollama (Local models)
ollama_llm = LLM.create(provider=LLMProvider.OLLAMA, model_name="llama2")

Reliable LLM with Failover

from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm.reliable import ReliableLLM

# Create primary and secondary LLMs
primary_llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
secondary_llm = LLM.create(provider=LLMProvider.ANTHROPIC, model_name="claude-3-5-sonnet-20241022")

# Create reliable LLM with automatic failover
reliable_llm = ReliableLLM(primary_llm, secondary_llm)

# If primary fails, automatically uses secondary
response = reliable_llm.generate_response(prompt="Explain machine learning")
print(response)

Structured JSON Output with Pydantic

from pydantic import BaseModel, Field
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model

class MovieRecommendation(BaseModel):
    title: str = Field(description="Movie title")
    genre: str = Field(description="Movie genre")
    year: int = Field(description="Release year")
    rating: float = Field(description="IMDb rating")
    reason: str = Field(description="Why this movie is recommended")

llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
prompt = "Recommend a great science fiction movie from the 2020s"

recommendation = generate_pydantic_json_model(
    llm_instance=llm,
    prompt=prompt,
    model_class=MovieRecommendation
)

print(f"Title: {recommendation.title}")
print(f"Genre: {recommendation.genre}")
print(f"Year: {recommendation.year}")
print(f"Rating: {recommendation.rating}")
print(f"Reason: {recommendation.reason}")

Reliable JSON Generation

from SimplerLLM.language.llm.reliable import ReliableLLM
from SimplerLLM.language.llm_addons import generate_pydantic_json_model_reliable

# Use reliable LLM with JSON generation
reliable_llm = ReliableLLM(primary_llm, secondary_llm)

recommendation, provider, model_name = generate_pydantic_json_model_reliable(
    reliable_llm=reliable_llm,
    prompt=prompt,
    model_class=MovieRecommendation
)

print(f"Generated by: {provider.name} using {model_name}")
print(f"Title: {recommendation.title}")

Embeddings

All Embedding Providers

from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider

# OpenAI Embeddings
openai_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.OPENAI,
    model_name="text-embedding-3-large"
)

# Voyage AI Embeddings
voyage_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.VOYAGE,
    model_name="voyage-3-large"
)

# Cohere Embeddings
cohere_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.COHERE,
    model_name="embed-english-v3.0"
)

# Generate embeddings
text = "SimplerLLM makes AI development easier"
embeddings = openai_embeddings.generate_embeddings(text)
print(f"Embedding dimensions: {len(embeddings)}")

Advanced Embedding Features

# Voyage AI with advanced options
voyage_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.VOYAGE,
    model_name="voyage-3-large"
)

# Optimize for search queries vs documents
query_embeddings = voyage_embeddings.generate_embeddings(
    user_input="What is machine learning?",
    input_type="query",
    output_dimension=1024
)

document_embeddings = voyage_embeddings.generate_embeddings(
    user_input="Machine learning is a subset of artificial intelligence...",
    input_type="document",
    output_dimension=1024
)

# Cohere with different input types
cohere_embeddings = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.COHERE,
    model_name="embed-english-v3.0"
)

classification_embeddings = cohere_embeddings.generate_embeddings(
    user_input="This is a positive review",
    input_type="classification"
)

Vector Databases

Local Vector Database

from SimplerLLM.vectors.vector_db import VectorDB, VectorProvider
from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider

# Create embeddings model
embeddings_model = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.OPENAI,
    model_name="text-embedding-3-small"
)

# Create local vector database
vector_db = VectorDB.create(provider=VectorProvider.LOCAL)

# Add documents
documents = [
    "SimplerLLM is a Python library for LLM interactions",
    "Vector databases store high-dimensional embeddings",
    "Semantic search finds similar content based on meaning"
]

for i, doc in enumerate(documents):
    embedding = embeddings_model.generate_embeddings(doc)
    vector_db.add_vector(id=f"doc_{i}", vector=embedding, metadata={"text": doc})

# Search for similar documents
query = "Python library for AI"
query_embedding = embeddings_model.generate_embeddings(query)
results = vector_db.search(query_embedding, top_k=2)

for result in results:
    print(f"Score: {result['score']:.4f}")
    print(f"Text: {result['metadata']['text']}")

Qdrant Vector Database

from SimplerLLM.vectors.vector_db import VectorDB, VectorProvider

# Create Qdrant vector database
qdrant_db = VectorDB.create(
    provider=VectorProvider.QDRANT,
    url="http://localhost:6333",
    collection_name="my_collection"
)

# Same interface as local vector database
embedding = embeddings_model.generate_embeddings("Sample document")
qdrant_db.add_vector(id="doc_1", vector=embedding, metadata={"text": "Sample document"})

Intelligent Routing

from SimplerLLM.language.llm_router.router import LLMRouter
from SimplerLLM.language.llm import LLM, LLMProvider

# Create router with LLM
llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
router = LLMRouter(llm)

# Add choices
choices = [
    ("Machine Learning Tutorial", {"category": "education", "difficulty": "beginner"}),
    ("Advanced Deep Learning", {"category": "education", "difficulty": "advanced"}),
    ("Python Programming Guide", {"category": "programming", "difficulty": "intermediate"})
]

router.add_choices(choices)

# Route based on input
result = router.route("I want to learn the basics of AI")
if result:
    print(f"Selected: {result.selected_index}")
    print(f"Confidence: {result.confidence_score}")
    print(f"Reasoning: {result.reasoning}")

# Get top 3 matches
top_results = router.route_top_k("programming tutorial", k=3)
for result in top_results:
    choice_content, metadata = router.get_choice(result.selected_index)
    print(f"Choice: {choice_content}")
    print(f"Confidence: {result.confidence_score}")

Advanced Tools

Content Loading

from SimplerLLM.tools.generic_loader import load_content

# Load from various sources
pdf_content = load_content("document.pdf")
web_content = load_content("https://example.com/article")
docx_content = load_content("document.docx")

print(f"PDF content: {pdf_content.content[:100]}...")
print(f"Web content: {web_content.content[:100]}...")

Text Chunking

from SimplerLLM.tools.text_chunker import (
    chunk_by_sentences,
    chunk_by_paragraphs,
    chunk_by_semantics,
    chunk_by_max_chunk_size
)
from SimplerLLM.language.embeddings import EmbeddingsLLM, EmbeddingsProvider

text = "Your long document text here..."

# Sentence-based chunking
sentence_chunks = chunk_by_sentences(text, max_sentences=3)

# Paragraph-based chunking
paragraph_chunks = chunk_by_paragraphs(text, max_paragraphs=2)

# Semantic chunking
embeddings_model = EmbeddingsLLM.create(
    provider=EmbeddingsProvider.OPENAI,
    model_name="text-embedding-3-small"
)
semantic_chunks = chunk_by_semantics(text, embeddings_model, threshold_percentage=80)

# Size-based chunking
size_chunks = chunk_by_max_chunk_size(text, max_chunk_size=1000)

Search Integration

from SimplerLLM.tools.serp import search_with_serper_api

# Search the web
results = search_with_serper_api("latest AI developments", num_results=5)
for result in results:
    print(f"Title: {result['title']}")
    print(f"URL: {result['link']}")
    print(f"Snippet: {result['snippet']}")

Prompt Templates

from SimplerLLM.prompts.prompt_builder import create_prompt_template, create_multi_value_prompts

# Single prompt template
template = create_prompt_template("Write a {style} article about {topic}")
template.assign_params(style="technical", topic="machine learning")
print(template.content)

# Multi-value prompts
multi_template = create_multi_value_prompts(
    "Hello {name}, your meeting is on {date} about {topic}"
)

params_list = [
    {"name": "Alice", "date": "Monday", "topic": "AI"},
    {"name": "Bob", "date": "Tuesday", "topic": "ML"},
]

prompts = multi_template.generate_prompts(params_list)
for prompt in prompts:
    print(prompt)

Configuration

Environment Variables

Create a .env file in your project root:

# LLM Providers
OPENAI_API_KEY=your_openai_api_key
ANTHROPIC_API_KEY=your_anthropic_api_key
GEMINI_API_KEY=your_gemini_api_key
COHERE_API_KEY=your_cohere_api_key
OPENROUTER_API_KEY=your_openrouter_api_key
OPENROUTER_SITE_URL=your_site_url  # Optional
OPENROUTER_SITE_NAME=your_site_name  # Optional

# Embeddings
VOYAGE_API_KEY=your_voyage_api_key

# Tools
RAPIDAPI_API_KEY=your_rapidapi_key
SERPER_API_KEY=your_serper_api_key
VALUE_SERP_API_KEY=your_value_serp_api_key
STABILITY_API_KEY=your_stability_api_key

Async Support

Most functions support async operations:

import asyncio
from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model_async

async def main():
    llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
    
    # Async response generation
    response = await llm.generate_response_async(prompt="What is async programming?")
    print(response)
    
    # Async JSON generation
    result = await generate_pydantic_json_model_async(
        llm_instance=llm,
        prompt="Generate a product review",
        model_class=MovieRecommendation
    )
    print(result)

asyncio.run(main())

Error Handling and Best Practices

Robust Error Handling

from SimplerLLM.language.llm import LLM, LLMProvider
from SimplerLLM.language.llm_addons import generate_pydantic_json_model

try:
    llm = LLM.create(provider=LLMProvider.OPENAI, model_name="gpt-4o")
    
    result = generate_pydantic_json_model(
        llm_instance=llm,
        prompt="Generate a summary",
        model_class=MovieRecommendation,
        max_retries=3
    )
    
    if isinstance(result, str):  # Error case
        print(f"Error: {result}")
    else:
        print(f"Success: {result}")
        
except Exception as e:
    print(f"Exception: {e}")

Cost Calculation

from SimplerLLM.language.llm_addons import calculate_text_generation_costs

input_text = "Your input prompt here"
output_text = "Generated response here"

cost_info = calculate_text_generation_costs(
    input=input_text,
    response=output_text,
    cost_per_million_input_tokens=2.50,  # Example: GPT-4 pricing
    cost_per_million_output_tokens=10.00,
    approximate=True  # Use approximate token counting
)

print(f"Input tokens: {cost_info['input_tokens']}")
print(f"Output tokens: {cost_info['output_tokens']}")
print(f"Total cost: ${cost_info['total_cost']:.6f}")

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support


SimplerLLM - Making AI development simpler, one line of code at a time.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

simplerllm-0.3.4.tar.gz (267.3 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

simplerllm-0.3.4-py3-none-any.whl (561.6 kB view details)

Uploaded Python 3

File details

Details for the file simplerllm-0.3.4.tar.gz.

File metadata

  • Download URL: simplerllm-0.3.4.tar.gz
  • Upload date:
  • Size: 267.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for simplerllm-0.3.4.tar.gz
Algorithm Hash digest
SHA256 8ca9fa0a835ff81839ccfdc75d5a5f5a3134d3dbe4921b22f4a7e985c60e4f96
MD5 f5390f115474da8b2af930e43ac06099
BLAKE2b-256 ecc42c89a13e951b1c4f7640eb073728c83bb9e67f76b0dae3338b2cfad17aa1

See more details on using hashes here.

File details

Details for the file simplerllm-0.3.4-py3-none-any.whl.

File metadata

  • Download URL: simplerllm-0.3.4-py3-none-any.whl
  • Upload date:
  • Size: 561.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/6.1.0 CPython/3.13.2

File hashes

Hashes for simplerllm-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 7aea9716d3bbc8aeb303bf2e08c9f94b30f5098f582f352ee497c68ad3476155
MD5 f2e71a95c623da3e194ac36abd1c31c9
BLAKE2b-256 1c338652d4cd912c5ba0ba4606563825d3b03462979ad79c3fceda61ed9af5d6

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page