Skip to main content

Vector Similarity Functions 3x-200x Faster than SciPy and NumPy

Project description

SimSIMD 📏

Efficient Alternative to scipy.spatial.distance and numpy.inner

SimSIMD leverages SIMD intrinsics, capabilities that only select compilers effectively utilize. This framework supports conventional AVX2 instructions on x86, NEON on Arm, as well as rare AVX-512 FP16 instructions on x86 and Scalable Vector Extensions (SVE) on Arm. Designed specifically for Machine Learning contexts, it's optimized for handling high-dimensional vector embeddings.

  • 3-200x faster than NumPy and SciPy distance functions.
  • ✅ Euclidean (L2), Inner Product, and Cosine (Angular) spatial distances.
  • ✅ Hamming (~ Manhattan) and Jaccard (~ Tanimoto) binary distances.
  • ✅ Kullback-Leibler and Jensen–Shannon divergences for probability distributions.
  • ✅ Single-precision f32, half-precision f16, i8, and binary vectors.
  • ✅ Compatible with GCC and Clang on MacOS and Linux, and MinGW on Windows.
  • ✅ Compatible with NumPy, PyTorch, TensorFlow, and other tensors.
  • ✅ Has no dependencies, not even LibC.
  • JavaScript API.
  • C API.

Benchmarks

Apple M2 Pro

Given 1000 embeddings from OpenAI Ada API with 1536 dimensions, running on the Apple M2 Pro Arm CPU with NEON support, here's how SimSIMD performs against conventional methods:

Conventional SimSIMD f32 improvement f16 improvement i8 improvement
numpy.inner inner 2 x 9 x 18 x
scipy.spatial.distance.cosine cosine 32 x 79 x 133 x
scipy.spatial.distance.sqeuclidean sqeuclidean 5 x 26 x 17 x
scipy.spatial.distance.jensenshannon jensenshannon 31 x 53 x
scipy.special.kl_div kullbackleibler 21 x 18 x

Intel Sapphire Rapids

On the Intel Sapphire Rapids platform, SimSIMD was benchmarked against auto-vectorized code using GCC 12. GCC handles single-precision float, but might not be the best choice for int8 and _Float16 arrays, which has been part of the C language since 2011.

GCC 12 f32 GCC 12 f16 SimSIMD f16 f16 improvement
cosine 3.28 M/s 336.29 k/s 6.88 M/s 20 x
sqeuclidean 4.62 M/s 147.25 k/s 5.32 M/s 36 x
inner 3.81 M/s 192.02 k/s 5.99 M/s 31 x
jensenshannon 1.18 M/s 18.13 k/s 2.14 M/s 118 x

Technical Insights:

Broader Benchmarking Results:

Using in Python

Installation

pip install simsimd

Distance Between 2 Vectors

import simsimd
import numpy as np

vec1 = np.random.randn(1536).astype(np.float32)
vec2 = np.random.randn(1536).astype(np.float32)
dist = simsimd.cosine(vec1, vec2)

Supported functions include cosine, inner, sqeuclidean, hamming, and jaccard.

Distance Between 2 Batches

batch1 = np.random.randn(100, 1536).astype(np.float32)
batch2 = np.random.randn(100, 1536).astype(np.float32)
dist = simsimd.cosine(batch1, batch2)

If either batch has more than one vector, the other batch must have one or same number of vectors. If it contains just one, the value is broadcasted.

All Pairwise Distances

For calculating distances between all possible pairs of rows across two matrices (akin to scipy.spatial.distance.cdist):

matrix1 = np.random.randn(1000, 1536).astype(np.float32)
matrix2 = np.random.randn(10, 1536).astype(np.float32)
distances = simsimd.cdist(matrix1, matrix2, metric="cosine")

Multithreading

By default, computations use a single CPU core. To optimize and utilize all CPU cores on Linux systems, add the threads=0 argument. Alternatively, specify a custom number of threads:

distances = simsimd.cdist(matrix1, matrix2, metric="cosine", threads=0)

Hardware Backend Capabilities

To view a list of hardware backends that SimSIMD supports:

print(simsimd.get_capabilities())

Using Python API with USearch

Want to use it in Python with USearch? You can wrap the raw C function pointers SimSIMD backends into a CompiledMetric, and pass it to USearch, similar to how it handles Numba's JIT-compiled code.

from usearch.index import Index, CompiledMetric, MetricKind, MetricSignature
from simsimd import pointer_to_sqeuclidean, pointer_to_cosine, pointer_to_inner

metric = CompiledMetric(
    pointer=pointer_to_cosine("f16"),
    kind=MetricKind.Cos,
    signature=MetricSignature.ArrayArraySize,
)

index = Index(256, metric=metric)

Using SimSIMD in JavaScript

After you add simsimd as a dependency and npm install, you will be able to call SimSIMD function on various TypedArray variants:

const { sqeuclidean, cosine, inner, hamming, jaccard } = require('simsimd');

const vectorA = new Float32Array([1.0, 2.0, 3.0]);
const vectorB = new Float32Array([4.0, 5.0, 6.0]);

const distance = sqeuclidean(vectorA, vectorB);
console.log('Squared Euclidean Distance:', distance);

Using SimSIMD in C

If you're aiming to utilize the _Float16 functionality with SimSIMD, ensure your development environment is compatible with C 11. For other functionalities of SimSIMD, C 99 compatibility will suffice.

For integration within a CMake-based project, add the following segment to your CMakeLists.txt:

FetchContent_Declare(
    simsimd
    GIT_REPOSITORY https://github.com/ashvardanian/simsimd.git
    GIT_SHALLOW TRUE
)
FetchContent_MakeAvailable(simsimd)
include_directories(${simsimd_SOURCE_DIR}/include)

Stay updated with the latest advancements by always using the most recent compiler available for your platform. This ensures that you benefit from the newest intrinsics.

Should you wish to integrate SimSIMD within USearch, simply compile USearch with the flag USEARCH_USE_SIMSIMD=1. Notably, this is the default setting on the majority of platforms.

To rerun experiments utilize the following command:

cmake -DCMAKE_BUILD_TYPE=Release -DSIMSIMD_BUILD_BENCHMARKS=1 -B ./build_release
cmake --build build_release --config Release
./build_release/simsimd_bench
./build_release/simsimd_bench --benchmark_filter=js

To test and benchmark with Python bindings:

pip install -e .
pytest python/test.py -s -x 
python python/bench.py --n 1000 --ndim 1000000 # batch size and dimensions

To test and benchmark JavaScript bindings:

npm install --dev
npm test
npm run bench

To test and benchmark GoLang bindings:

cd golang
go test # To test
go test -run=^$ -bench=. -benchmem # To benchmark

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

simsimd-3.5.3-cp312-cp312-win_amd64.whl (22.1 kB view details)

Uploaded CPython 3.12Windows x86-64

simsimd-3.5.3-cp312-cp312-manylinux_2_28_x86_64.whl (315.7 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ x86-64

simsimd-3.5.3-cp312-cp312-manylinux_2_28_aarch64.whl (179.5 kB view details)

Uploaded CPython 3.12manylinux: glibc 2.28+ ARM64

simsimd-3.5.3-cp312-cp312-macosx_11_0_arm64.whl (25.1 kB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

simsimd-3.5.3-cp312-cp312-macosx_10_9_x86_64.whl (26.0 kB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

simsimd-3.5.3-cp311-cp311-win_amd64.whl (22.0 kB view details)

Uploaded CPython 3.11Windows x86-64

simsimd-3.5.3-cp311-cp311-manylinux_2_28_x86_64.whl (315.3 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ x86-64

simsimd-3.5.3-cp311-cp311-manylinux_2_28_aarch64.whl (179.2 kB view details)

Uploaded CPython 3.11manylinux: glibc 2.28+ ARM64

simsimd-3.5.3-cp311-cp311-macosx_11_0_arm64.whl (25.1 kB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

simsimd-3.5.3-cp311-cp311-macosx_10_9_x86_64.whl (26.0 kB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

simsimd-3.5.3-cp310-cp310-win_amd64.whl (22.0 kB view details)

Uploaded CPython 3.10Windows x86-64

simsimd-3.5.3-cp310-cp310-manylinux_2_28_x86_64.whl (315.2 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ x86-64

simsimd-3.5.3-cp310-cp310-manylinux_2_28_aarch64.whl (179.1 kB view details)

Uploaded CPython 3.10manylinux: glibc 2.28+ ARM64

simsimd-3.5.3-cp310-cp310-macosx_11_0_arm64.whl (25.1 kB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

simsimd-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl (26.0 kB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

simsimd-3.5.3-cp39-cp39-win_amd64.whl (22.0 kB view details)

Uploaded CPython 3.9Windows x86-64

simsimd-3.5.3-cp39-cp39-manylinux_2_28_x86_64.whl (315.1 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ x86-64

simsimd-3.5.3-cp39-cp39-manylinux_2_28_aarch64.whl (179.0 kB view details)

Uploaded CPython 3.9manylinux: glibc 2.28+ ARM64

simsimd-3.5.3-cp39-cp39-macosx_11_0_arm64.whl (25.1 kB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

simsimd-3.5.3-cp39-cp39-macosx_10_9_x86_64.whl (26.0 kB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

simsimd-3.5.3-cp38-cp38-win_amd64.whl (22.0 kB view details)

Uploaded CPython 3.8Windows x86-64

simsimd-3.5.3-cp38-cp38-manylinux_2_28_x86_64.whl (315.1 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ x86-64

simsimd-3.5.3-cp38-cp38-manylinux_2_28_aarch64.whl (179.0 kB view details)

Uploaded CPython 3.8manylinux: glibc 2.28+ ARM64

simsimd-3.5.3-cp38-cp38-macosx_11_0_arm64.whl (25.1 kB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

simsimd-3.5.3-cp38-cp38-macosx_10_9_x86_64.whl (26.0 kB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

simsimd-3.5.3-cp37-cp37m-win_amd64.whl (21.9 kB view details)

Uploaded CPython 3.7mWindows x86-64

simsimd-3.5.3-cp36-cp36m-win_amd64.whl (21.9 kB view details)

Uploaded CPython 3.6mWindows x86-64

File details

Details for the file simsimd-3.5.3-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: simsimd-3.5.3-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 22.1 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for simsimd-3.5.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 3ec09f66c25b156bcc70ae2467f17a7d4784e888f82698ed020742ea08a4e334
MD5 65e855bbe172d1381af3c7593e438078
BLAKE2b-256 567566f21ad7e0dc5740d3eb5c7c74e1cb654d60cd6772be24457f40750acd09

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 cc473780bd13ea6e6ca95246b8a15e7ef42936833bdfd40a219aee65fa135d2a
MD5 08a75a467beade4f120a0fca290e4460
BLAKE2b-256 8b3a3d1aa7bc72353e7c2acd07ad0921f1b993b53642a842ff7c50dd452b49ee

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 46c228fbaa52036504fe4467a7877549674e2c1ff8ab0fb845a9921155bcffb6
MD5 dc907772bf72f0bc9d49271833800182
BLAKE2b-256 e5171453e4aa9e8a263011e2c124dba57319887300d0e767452ecf2efbee2c0a

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9b4fc7008b37321ef2fcac9a61dbb3de09b71b0b34abd400478e3e1d781f5e11
MD5 ac8f834305802400ace3c54aab457c38
BLAKE2b-256 dff5ac632e58eaaff8968506a32ac2ba1140e8423502993d24767f84b3ab4540

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 41c55b736389384e298234e65398817bba39fb7272f353b06f7f907eea7b696c
MD5 6c4217896c14d826ab11a0c903865856
BLAKE2b-256 ced1aa24313834d68b25c1bd03ec15be798dde38752f8c211e106a2e25f128ea

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: simsimd-3.5.3-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for simsimd-3.5.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 28f795b93c3667c78856e38ba29ae2df48c80fa24f43393a5eeb1815c9362c20
MD5 42bc488dad69fc8620e054f3594404d0
BLAKE2b-256 e06f33061242336beba2b3618ca84b237f912a46570eb93c0a83ca5fba709cef

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 7a04184d38c85fc3e8ed3ad631f64ef6f4452d419a1b7b2d8990dd5799bcba2e
MD5 f052bed3a7fa90fa9ef7424335380a98
BLAKE2b-256 195522d474555ae96768da5a5b4b8d48fa02c6f96eaa3ba80b999aeff1bfa7a9

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 ee1ad4299b2f6c2fbf0e120b1a877d1b6fbcbc9d47281f3cb8f5327c4dabeb6e
MD5 de078cd0f6f683553fc287c12fc2270a
BLAKE2b-256 4cdd674598b94252719e5961b14ff1e10a5832ee2e2d8c3be623901f62ea6b55

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4d99d67b84df5ac216570310f44c9ca69ada55f59ca1fbcca303788986100b32
MD5 3615467c85bb4fc9f2587a2230ec7161
BLAKE2b-256 393228ba0078b010be06e5b17efdeda587f93906d0f2bf32abceb4077ccc65d7

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 799f814defb69a8490479b4cc3a6ea82cf94d860aef263393c8802343ebe6489
MD5 db96e15352753add45310af0ebb1b50f
BLAKE2b-256 3371484d6bc2eded2db407da183f593fe63c485cf56fa6e509dc087d11df16f0

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: simsimd-3.5.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for simsimd-3.5.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 bb0bbc6a8c67926692c637dd99283d24ec1947d88d4968afee4019ab971c2ef3
MD5 b63869722058d833643c3dc7fbdac1b4
BLAKE2b-256 c88f11db5eb607e557f33bacd4b3c7b35f57e52e8dc08db6e1138269fcb02c9c

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 c7b063bbc85ef40ca371916344880d9d9307f0d2ca836d71fade7e616e72a161
MD5 e21c99f31b595971161003e5b824e72e
BLAKE2b-256 ace431423c4ca900b264e604f818ceaaeb070f421ae5ff8433f5204dd53e0935

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 6757ad76bb58076ea453ce5e061346b49ff972e73671331b347fe9721e28e51b
MD5 7dace11bb4da24b6c0b65c264c603731
BLAKE2b-256 4b19a1e0bd02d9783a0a6e1958494c32d73ec9a671e905c6c17c2bc061034bbf

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e961bcfe90606761b988226e3a223048f872234f1ce947a9496cca28a8d7563b
MD5 f7046ed32a2e6113d4656d9f55500b49
BLAKE2b-256 fd36a8cafbcdb738e04bc06c1fadc60489a02d3ebf1e890cac1b905974155973

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e55b518a104742eb5adb95e19cb3ae26828b7ddab82ec77f68fedbdc3254dea9
MD5 22642aa0f625bb5560a6469a4e2a3190
BLAKE2b-256 fc812f05fab2a36800b8a57d525809066a346f299c5e2a696c0bba4ba0fb404d

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: simsimd-3.5.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for simsimd-3.5.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 71b5a4c2203001e16e18818aa283eefb73ca0b7a9f55bfcbc57ed60359cb5f48
MD5 8510450fc94b05c8e81b9c8cfd40873f
BLAKE2b-256 f2ccdf448a8e063b2ce03d9e964d8172e591e8c87076d6e9a410199b2c86460a

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 12d95a3710d65b3c9c98040ed70f23a18c0bd4ae4d8865141bd47c737ca8fc9e
MD5 6a2547578ea2f05377994511cdd5bef1
BLAKE2b-256 0c99499991841d0b69aa300c654fd42a5b5c2cffe05ca3d84a74eb61f780bf33

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 52dc338d013d4701b12e9e3cb857b4dca7e50aa5951aef6daddc73462e348be3
MD5 6d2f3bd01677f024f5e32a5cf6e1c6c6
BLAKE2b-256 e3cef50c42cda6086736d1a48bb37be6bc17fc46a1338cf15a87f960a9aa9bc4

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 69ce603f38190acbe4e27d172462f924f2b09f1b848c410e0dfaa58ab9f0c768
MD5 0e108447018d1167ae02ab723cf8dbf2
BLAKE2b-256 63b321ede3a1f3cd9434f1b97fc3da00abfbefd91f3ad4c0b48b7208f45c7d3d

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73575e678859924dedf7a54a1023109b2f47d792355ec6ecedcfdda858daeab3
MD5 10976e9e2324ee84b80cf90ca35c1894
BLAKE2b-256 b36de965af076844ee9e887585f2397c22a3e333155598afc953943b241cc10b

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: simsimd-3.5.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 22.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for simsimd-3.5.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 10d7143ed4b52fdda1c3c655ad48dfe4ef12759d24a9c2856e5e7a513ec8d4ce
MD5 295ab2e448da40104034d01455cb3bf0
BLAKE2b-256 fba450b995d4ac851aa6116cacdebb8e96de54afa2ff1e001ecab7665d2bcfdc

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4d7e0fd2405ca97c1f75319976254792ae5fbd755a89070b19cd6e816f2ed707
MD5 62bf9aa4ae58d0f04d6d092fbee9112a
BLAKE2b-256 b16e5ae47ae9fc3aaedf59dc78ebd9ede58f0a99db59a1ba1ad775f18dec0726

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 cac5ea8172aec35451423aa5acd7464183816fefa805ab732d117f62bf82d549
MD5 87cec01ea9b24b2a75c8d82edab282ce
BLAKE2b-256 7c99a0f4891c58410482844328b231572a1ea382e2a75b6f2499cb27c73d050a

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7950f53d0a8be33997593fb1422ac860e23f7272bb582f7cc069f3e75512b9f5
MD5 446fd6a6ca9135677146697fe79485f5
BLAKE2b-256 7606b643a2431ed3f1ebcdab62846a27ba858ce87cd9b12680399857a9b4c3ce

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for simsimd-3.5.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0777c2448db2c5cd6f8801447b78649751fcf18d91886908f5d19b63c88bcac1
MD5 6d1e17b786387ba3f7548f672e1c1ccc
BLAKE2b-256 c2dd177adc43e68b1df3e451bf9bb7b49566b295157d3229f10404a540ab1ffa

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: simsimd-3.5.3-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 21.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for simsimd-3.5.3-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 daf56299560f284bcb776ea8656aeb2d1cf973e2d8f2678f9b5ca2fed4d809c7
MD5 f9620df6307d69cd04f4223bba65844f
BLAKE2b-256 7e6ed94786e79e20d6dff1bd26f0dfec7b6937a2534972f01221bfa87311a9d2

See more details on using hashes here.

File details

Details for the file simsimd-3.5.3-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: simsimd-3.5.3-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 21.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for simsimd-3.5.3-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 fe889da6d6fde9c90acb2a99116604433b0f4ab3f51f850edf320bc4557e268f
MD5 3ebf054d234b53b6098215fac458f9d2
BLAKE2b-256 435c85e9e0d2ee7c11f7ac348cefea6c173a28e8189fa85f9a1003c873dc7c25

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page